
A label-free optical imaging technique using autofluorescence lifetime and AI can distinguish colorectal cancer with 85% accuracy.
Key Details
- 1Champalimaud Foundation researchers developed a fiber-optic, label-free optical imaging method for colorectal tissue analysis.
- 2Technique involves autofluorescence lifetime measurements at two wavelengths to capture biochemical differences.
- 3Machine learning (AdaBoost) trained on 117 patients' surgical specimens, validated with matched pathology results.
- 4On test data, the AI achieved 85% accuracy, 85% sensitivity, and 85% specificity.
- 5Potential applications include real-time cancer detection during colonoscopy or surgery, reducing the need for biopsies.
- 6Simplified versions of the imaging system delivered strong results, supporting future clinical use.
Why It Matters

Source
EurekAlert
Related News

AutoML Model Accurately Differentiates Brain Tumors on MRI
Thomas Jefferson University researchers developed an AutoML model that distinguishes pituitary macroadenomas from parasellar meningiomas on MRI with over 97% accuracy.

AI Model Improves Differentiation of Brain Tumor Progression from Radiation Necrosis on MRI
A York University-led study shows a novel AI using advanced MRI can distinguish between progressive brain tumors and radiation necrosis more accurately than human assessment.

Survey: Public Trusts Doctors Over AI, But Embraces AI For Cancer Diagnosis
Most people trust doctors more than AI for health diagnoses, but see significant potential for AI tools in cancer detection.