AI assistance enhances radiologists' breast cancer detection performance and directs attention to critical regions in mammograms.
Key Details
- 1Study included 12 breast imaging radiologists with 4–32 years’ experience from 10 institutions.
- 2150 mammography exams were analyzed (75 positive for cancer, 75 negative).
- 3With AI, average AUC improved from 0.93 to 0.97 (p<0.001); sensitivity increased from 81.7% to 87.2%.
- 4Radiologists spent more fixation time on lesion regions (5.4s with AI vs 4.4s) and covered less of the whole breast (9.5% vs 11.1%).
- 5No significant increase in reading time was found with AI support (30.8s with AI vs 29.4s).
- 6The study used Transpara (ScreenPoint Medical) as the AI tool; further research underway on timing and selective use of AI in practice.
Why It Matters

Source
AuntMinnie
Related News

Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

AI Projected to Reshape Radiologist Workload But Not Eliminate Jobs
Stanford researchers predict AI could reduce radiologist hours by up to 49% over the next five years, though workforce size is likely to remain stable due to rising imaging demand.