
Artificial intelligence-driven tools are improving embryo selection for IVF by making health assessment more consistent and precise.
Key Details
- 1Approximately 17.5% of adult couples globally are affected by infertility, with IVF success rates averaging around 30%.
- 2Traditional embryo health assessments in IVF rely on subjective visual evaluations by embryologists.
- 3Recent AI advances enable automated analysis of embryo morphology images, reducing subjectivity and improving consistency.
- 4AI-driven approaches include deep learning applied to early, blastocyst, and full developmental stages using multimodal data.
- 5The review analyzed 37 studies and found AI often outperformed manual assessments in accuracy and efficiency.
- 6Challenges discussed include clinical integration, data quality, and ethical considerations.
Why It Matters
AI tools in embryo imaging can standardize and improve IVF outcomes, minimizing variability between embryologists. The findings underscore the potential for imaging AI to set new benchmarks for precision and reliability in reproductive medicine.

Source
EurekAlert
Related News

•EurekAlert
Imaging Reveals Skull Changes and Immune Impact in Glioblastoma
Advanced imaging uncovers that glioblastoma affects the skull and immune system, not just the brain.

•EurekAlert
AI Time Series Model Boosts EEG-Based Seizure Prediction by 44%
UC Santa Cruz engineers' 'future-guided' deep learning improves seizure prediction accuracy using EEG data.

•EurekAlert
AI Accurately Predicts Lymph Node Extension in HPV-related Throat Cancer via CT
An AI pipeline automates lymph node segmentation and extranodal extension prediction from CT in HPV-positive oropharyngeal cancer, correlating with patient outcomes.