
Artificial intelligence-driven tools are improving embryo selection for IVF by making health assessment more consistent and precise.
Key Details
- 1Approximately 17.5% of adult couples globally are affected by infertility, with IVF success rates averaging around 30%.
- 2Traditional embryo health assessments in IVF rely on subjective visual evaluations by embryologists.
- 3Recent AI advances enable automated analysis of embryo morphology images, reducing subjectivity and improving consistency.
- 4AI-driven approaches include deep learning applied to early, blastocyst, and full developmental stages using multimodal data.
- 5The review analyzed 37 studies and found AI often outperformed manual assessments in accuracy and efficiency.
- 6Challenges discussed include clinical integration, data quality, and ethical considerations.
Why It Matters
AI tools in embryo imaging can standardize and improve IVF outcomes, minimizing variability between embryologists. The findings underscore the potential for imaging AI to set new benchmarks for precision and reliability in reproductive medicine.

Source
EurekAlert
Related News

•EurekAlert
AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

•EurekAlert
AI Trains on Pathologists’ Eye Movements to Improve Biopsy Analysis
Researchers developed a deep learning system using eye-tracking data to enhance AI-powered biopsy image interpretation.

•EurekAlert
AI Model Predicts Multiple Genetic Markers from Colorectal Pathology Slides
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.