Sort by:
Page 1 of 328 results
Next

Evaluating the Accuracy and Efficiency of AI-Generated Radiology Reports Based on Positive Findings-A Qualitative Assessment of AI in Radiology.

Rajmohamed RF, Chapala S, Shazahan MA, Wali P, Botchu R

pubmed logopapersSep 26 2025
With increasing imaging demands, radiologists face growing workload pressures, often resulting in delays and reduced diagnostic efficiency. Recent advances in artificial intelligence (AI) have introduced tools for automated report generation, particularly in simpler imaging modalities, such as X-rays. However, limited research has assessed AI performance in complex studies such as MRI and CT scans, where report accuracy and clinical interpretation are critical. To evaluate the performance of a semi-automated AI-based reporting platform in generating radiology reports for complex imaging studies, and to compare its accuracy, efficiency, and user confidence with the traditional dictation method. This study involved 100 imaging cases, including MRI knee (n=21), MRI lumbar spine (n=30), CT head (n=23), and CT Abdomen and Pelvis (n=26). Consultant musculoskeletal radiologists reported each case using both traditional dictation and the AI platform. The radiologist first identified and entered the key positive findings, based on which the AI system generated a full draft report. Reporting time was recorded, and both methods were evaluated on accuracy, user confidence, and overall reporting experience (rated on a scale of 1-5). Statistical analysis was conducted using two-tailed t-tests and 95% confidence intervals. AI-generated reports demonstrated significantly improved performance across all parameters. The mean reporting time reduced from 6.1 to 3.43 min (p<0.0001) with AI-assisted report generation. Accuracy improved from 3.81 to 4.65 (p<0.0001), confidence ratings increased from 3.91 to 4.67 (p<0.0001), and overall reporting experience favored using the AI platform for generating radiology reports (mean 4.7 vs. 3.69, p<0.0001). Minor formatting errors and occasional anatomical misinterpretations were observed in AI-generated reports, but could be easily corrected by the radiologist during review. The AI-assisted reporting platform significantly improved efficiency and radiologist confidence without compromising accuracy. Although the tool performs well when provided with key clinical findings, it still requires expert oversight, especially in anatomically complex reporting. These findings support the use of AI as a supportive tool in radiology practice, with a focus on data integrity, consistency, and human validation.

Radiologist Interaction with AI-Generated Preliminary Reports: A Longitudinal Multi-Reader Study.

Hong EK, Suh CH, Nukala M, Esfahani A, Licaros A, Madan R, Hunsaker A, Hammer M

pubmed logopapersSep 20 2025
To investigate the integration of multimodal AI-generated reports into radiology workflow over time, focusing on their impact on efficiency, acceptability, and report quality. A multicase, multireader study involved 756 publicly available chest radiographs interpreted by five radiologists using preliminary reports generated by a radiology-specific multimodal AI model, divided into seven sequential batches of 108 radiographs each. Two thoracic radiologists assessed the final reports using RADPEER criteria for agreement and 5-point Likert scale for quality. Reading times, rate of acceptance without modification, agreement, and quality scores were measured, with statistical analyses evaluating trends across seven sequential batches. Radiologists' reading times for chest radiographs decreased from 25.8 seconds in Batch 1 to 19.3 seconds in Batch 7 (p < .001). Acceptability increased from 54.6% to 60.2% (p < .001), with normal chest radiographs demonstrating high rates (68.9%) compared to abnormal chest radiographs (52.6%; p < .001). Median agreement and quality scores remained stable for normal chest radiographs but varied significantly for abnormal chest radiographs (ps < .05). The introduction of AI-generated reports improved efficiency of chest radiograph interpretation, acceptability increased over time. However, agreement and quality scores showed variability, particularly in abnormal cases, emphasizing the need for oversight in the interpretation of complex chest radiographs.

MPCM-RRG: Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation.

Yu Y, Huang G, Tan Z, Shi J, Li M, Pun CM, Zheng F, Ma S, Wang S, He L

pubmed logopapersSep 17 2025
The task of medical report generation involves automatically creating descriptive text reports from medical images, with the aim of alleviating the workload of physicians and enhancing diagnostic efficiency. However, although many existing medical report generation models based on the Transformer framework consider structural information in medical images, they ignore the interference of confounding factors on these structures, which limits the model's ability to effectively capture rich and critical lesion information. Furthermore, these models often struggle to address the significant imbalance between normal and abnormal content in actual reports, leading to challenges in accurately describing abnormalities. To address these limitations, we propose the Multi-modal Prompt Collaboration Mechanism for Radiology Report Generation Model (MPCM-RRG). This model consists of three key components: the Visual Causal Prompting Module (VCP), the Textual Prompt-Guided Feature Enhancement Module (TPGF), and the Visual-Textual Semantic Consistency Module (VTSC). The VCP module uses chest X-ray masks as visual prompts and incorporates causal inference principles to help the model minimize the influence of irrelevant regions. Through causal intervention, the model can learn the causal relationships between the pathological regions in the image and the corresponding findings described in the report. The TPGF module tackles the imbalance between abnormal and normal text by integrating detailed textual prompts, which also guide the model to focus on lesion areas using a multi-head attention mechanism. The VTSC module promotes alignment between the visual and textual representations through contrastive consistency loss, fostering greater interaction and collaboration between the visual and textual prompts. Experimental results demonstrate that MPCM-RRG outperforms other methods on the IU X-ray and MIMIC-CXR datasets, highlighting its effectiveness in generating high-quality medical reports.

SGRRG: Leveraging radiology scene graphs for improved and abnormality-aware radiology report generation.

Wang J, Zhu L, Bhalerao A, He Y

pubmed logopapersSep 15 2025
Radiology report generation (RRG) methods often lack sufficient medical knowledge to produce clinically accurate reports. A scene graph provides comprehensive information for describing objects within an image. However, automatically generated radiology scene graphs (RSG) may contain noise annotations and highly overlapping regions, posing challenges in utilizing RSG to enhance RRG. To this end, we propose Scene Graph aided RRG (SGRRG), a framework that leverages an automatically generated RSG and copes with noisy supervision problems in the RSG with a transformer-based module, effectively distilling medical knowledge in an end-to-end manner. SGRRG is composed of a dedicated scene graph encoder responsible for translating the radiography into a RSG, and a scene graph-aided decoder that takes advantage of both patch-level and region-level visual information and mitigates the noisy annotation problem in the RSG. The incorporation of both patch-level and region-level features, alongside the integration of the essential RSG construction modules, enhances our framework's flexibility and robustness, enabling it to readily exploit prior advanced RRG techniques. A fine-grained, sentence-level attention method is designed to better distill the RSG information. Additionally, we introduce two proxy tasks to enhance the model's ability to produce clinically accurate reports. Extensive experiments demonstrate that SGRRG outperforms previous state-of-the-art methods in report generation and can better capture abnormal findings. Code is available at https://github.com/Markin-Wang/SGRRG.

Activating Associative Disease-Aware Vision Token Memory for LLM-Based X-ray Report Generation.

Wang X, Wang F, Wang H, Jiang B, Li C, Wang Y, Tian Y, Tang J

pubmed logopapersAug 27 2025
X-ray image based medical report generation achieves significant progress in recent years with the help of large language models, however, these models have not fully exploited the effective information in visual image regions, resulting in reports that are linguistically sound but insufficient in describing key diseases. In this paper, we propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports. It considers both the mining of global and local visual information and associates historical report information to better complete the writing of the current report. Specifically, given an X-ray image, we first utilize a classification model along with its activation maps to accomplish the mining of visual regions highly associated with diseases and the learning of disease query tokens. Then, we employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information. This process facilitates the generation of high-quality reports based on a large language model and achieves state-of-the-art performance on multiple benchmark datasets, including the IU X-ray, MIMIC-CXR, and Chexpert Plus. The source code and pre-trained models of this work have been released on https://github.com/Event-AHU/Medical_Image_Analysis.

Leveraging an Image-Enhanced Cross-Modal Fusion Network for Radiology Report Generation.

Guo Y, Hou X, Liu Z, Zhang Y

pubmed logopapersAug 11 2025
Radiology report generation (RRG) tasks leverage computer-aided technology to automatically produce descriptive text reports for medical images, aiming to ease radiologists' workload, reduce misdiagnosis rates, and lessen the pressure on medical resources. However, previous works have yet to focus on enhancing feature extraction of low-quality images, incorporating cross-modal interaction information, and mitigating latency in report generation. We propose an Image-Enhanced Cross-Modal Fusion Network (IFNet) for automatic RRG to tackle these challenges. IFNet includes three key components. First, the image enhancement module enhances the detailed representation of typical and atypical structures in X-ray images, thereby boosting detection success rates. Second, the cross-modal fusion networks efficiently and comprehensively capture the interactions of cross-modal features. Finally, a more efficient transformer report generation module is designed to optimize report generation efficiency while being suitable for low-resource devices. Experimental results on public datasets IU X-ray and MIMIC-CXR demonstrate that IFNet significantly outperforms the current state-of-the-art methods.

ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Impression Generation on Multi-institution and Multi-system Data.

Zhong T, Zhao W, Zhang Y, Pan Y, Dong P, Jiang Z, Jiang H, Zhou Y, Kui X, Shang Y, Zhao L, Yang L, Wei Y, Li Z, Zhang J, Yang L, Chen H, Zhao H, Liu Y, Zhu N, Li Y, Wang Y, Yao J, Wang J, Zeng Y, He L, Zheng C, Zhang Z, Li M, Liu Z, Dai H, Wu Z, Zhang L, Zhang S, Cai X, Hu X, Zhao S, Jiang X, Zhang X, Liu W, Li X, Zhu D, Guo L, Shen D, Han J, Liu T, Liu J, Zhang T

pubmed logopapersAug 11 2025
Achieving clinical level performance and widespread deployment for generating radiology impressions encounters a giant challenge for conventional artificial intelligence models tailored to specific diseases and organs. Concurrent with the increasing accessibility of radiology reports and advancements in modern general AI techniques, the emergence and potential of deployable radiology AI exploration have been bolstered. Here, we present ChatRadio-Valuer, the first general radiology diagnosis large language model for localized deployment within hospitals and being close to clinical use for multi-institution and multi-system diseases. ChatRadio-Valuer achieved 15 state-of-the-art results across five human systems and six institutions in clinical-level events (n=332,673) through rigorous and full-spectrum assessment, including engineering metrics, clinical validation, and efficiency evaluation. Notably, it exceeded OpenAI's GPT-3.5 and GPT-4 models, achieving superior performance in comprehensive disease diagnosis compared to the average level of radiology experts. Besides, ChatRadio-Valuer supports zero-shot transfer learning, greatly boosting its effectiveness as a radiology assistant, while ensuring adherence to privacy standards and being readily utilized for large-scale patient populations. Our expeditions suggest the development of localized LLMs would become an imperative avenue in hospital applications.

AIMR-MediTell: Attention-Infused Mask RNN for Medical Image Interpretation and Report Generation.

Chen L, Yang L, Bedir O

pubmed logopapersAug 7 2025
Medical diagnostics often rely on the interpretation of complex medical images. However, manual analysis and report generation by medical practitioners are time-consuming, and the inherent ambiguity in chest X-rays presents significant challenges for automated systems in producing interpretable results. To address this, we propose Attention-Infused Mask Recurrent Neural Network (AIMR-MediTell), a deep learning framework integrating instance segmentation using Mask RCNN with attention-based feature extraction to identify and highlight abnormal regions in chest X-rays. This framework also incorporates an encoder-decoder structure with pretrained BioWordVec embeddings to generate explanatory reports based on augmented images. We evaluated AIMR-MediTell on the Open-I dataset, achieving a BLEU-4 score of 0.415, outperforming existing models. Our results demonstrate the effectiveness of the proposed model, showing that incorporating masked regions enhances report accuracy and interpretability. By identifying malfunction areas and automating report generation for X-ray images, our approach has the potential to significantly improve the efficiency and accuracy of medical image analysis.

Improving Radiology Report Generation with Semantic Understanding.

Ahn S, Park H, Yoo J, Choi J

pubmed logopapersAug 7 2025
This study proposes RRG-LLM, a model designed to enhance RRG by effectively learning medical domain with minimal computational resources. Initially, LLM is finetuned by LoRA, enabling efficient adaptation to the medical domain. Subsequently, only the linear projection layer that project the image into text is finetuned to extract important information from the radiology image and project it onto the text dimension. Proposed model demonstrated notable improvements in report generation. The performance of ROUGE-L was improved by 0.096 (51.7%) and METEOR by 0.046 (42.85%) compared to the baseline model.

Keyword-based AI assistance in the generation of radiology reports: A pilot study.

Dong F, Nie S, Chen M, Xu F, Li Q

pubmed logopapersAug 1 2025
Radiology reporting is a time-intensive process, and artificial intelligence (AI) shows potential for textual processing in radiology reporting. In this study, we proposed a keyword-based AI-assisted radiology reporting paradigm and evaluated its potential for clinical implementation. Using MRI data from 100 patients with intracranial tumors, two radiology residents independently wrote both a routine complete report (routine report) and a keyword report for each patient. Based on the keyword reports and a designed prompt, AI-assisted reports were generated (AI-generated reports). The results demonstrated median reporting time reduction ratios of 27.1% and 28.8% (mean, 28.0%) for the two residents, with no significant difference in quality scores between AI-generated and routine reports (p > 0.50). AI-generated reports showed primary diagnosis accuracies of 68.0% (Resident 1) and 76.0% (Resident 2) (mean, 72.0%). These findings suggest that the keyword-based AI-assisted reporting paradigm exhibits significant potential for clinical translation.
Page 1 of 328 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.