Sort by:
Page 1 of 217 results

Artificial intelligence in dentistry: awareness among dentists and computer scientists.

Costa ED, Vieira MA, Ambrosano GMB, Gaêta-Araujo H, Carneiro JA, Zancan BAG, Scaranti A, Macedo AA, Tirapelli C

pubmed logopapersMay 16 2025
For clinical application of artificial intelligence (AI) in dentistry, collaboration with computer scientists is necessary. This study aims to evaluate the knowledge of dentists and computer scientists regarding the utilization of AI in dentistry, especially in dentomaxillofacial radiology. 610 participants (374 dentists and 236 computer scientists) took part in a survey about AI in dentistry and radiographic imaging. Response options contained Likert scale of agreement/disagreement. Descriptive analyses of agreement scores were performed using quartiles (minimum value, first quartile, median, third quartile, and maximum value). Non-parametric Mann-Whitney test was used to compare response scores between two categories (α = 5%). Dentists academics had higher agreement scores for the questions: "knowing the applications of AI in dentistry", "dentists taking the lead in AI research", "AI education should be part of teaching", "AI can increase the price of dental services", "AI can lead to errors in radiographic diagnosis", "AI can negatively interfere with the choice of Radiology specialty", "AI can cause a reduction in the employment of radiologists", "patient data can be hacked using AI" (p < 0.05). Computer scientists had higher concordance scores for the questions "having knowledge in AI" and "AI's potential to speed up and improve radiographic diagnosis". Although dentists acknowledge the potential benefits of AI in dentistry, they remain skeptical about its use and consider it important to integrate the topic of AI into dental education curriculum. On the other hand, computer scientists confirm technical expertise in AI and recognize its potential in dentomaxillofacial radiology.

Total radius BMD correlates with the hip and lumbar spine BMD among post-menopausal patients with fragility wrist fracture in a machine learning model.

Ruotsalainen T, Panfilov E, Thevenot J, Tiulpin A, Saarakkala S, Niinimäki J, Lehenkari P, Valkealahti M

pubmed logopapersMay 14 2025
Osteoporosis screening should be systematic in the group of over 50-year-old females with a radius fracture. We tested a phantom combined with machine learning model and studied osteoporosis-related variables. This machine learning model for screening osteoporosis using plain radiographs requires further investigation in larger cohorts to assess its potential as a replacement for DXA measurements in settings where DXA is not available. The main purpose of this study was to improve osteoporosis screening, especially in post-menopausal patients with fragility wrist fractures. The secondary objective was to increase understanding of the connection between osteoporosis and aging, as well as other risk factors. We collected data on 83 females > 50 years old with a distal radius fracture treated at Oulu University Hospital in 2019-2020. The data included basic patient information, WHO FRAX tool, blood tests, X-ray imaging of the fractured wrist, and DXA scanning of the non-fractured forearm, both hips, and the lumbar spine. Machine learning was used in combination with a custom phantom. Eighty-five percent of the study population had osteopenia or osteoporosis. Only 28.4% of patients had increased bone resorption activity measured by ICTP values. Total radius BMD correlated with other osteoporosis-related variables (age r =  - 0.494, BMI r = 0.273, FRAX osteoporotic fracture risk r =  - 0.419, FRAX hip fracture risk r =  - 0.433, hip BMD r = 0.435, and lumbar spine BMD r = 0.645), but the ultra distal (UD) radius BMD did not. Our custom phantom combined with a machine learning model showed potential for screening osteoporosis, with the class-wise accuracies for "Osteoporotic vs. osteopenic & normal bone" of 76% and 75%, respectively. We suggest osteoporosis screening for all females over 50 years old with wrist fractures. We found that the total radius BMD correlates with the central BMD. Due to the limited sample size in the phantom and machine learning parts of the study, further research is needed to make a clinically useful tool for screening osteoporosis.

Synthetic Data-Enhanced Classification of Prevalent Osteoporotic Fractures Using Dual-Energy X-Ray Absorptiometry-Based Geometric and Material Parameters.

Quagliato L, Seo J, Hong J, Lee T, Chung YS

pubmed logopapersMay 14 2025
Bone fracture risk assessment for osteoporotic patients is essential for implementing early countermeasures and preventing discomfort and hospitalization. Current methodologies, such as Fracture Risk Assessment Tool (FRAX), provide a risk assessment over a 5- to 10-year period rather than evaluating the bone's current health status. The database was collected by Ajou University Medical Center from 2017 to 2021. It included 9,260 patients, aged 55 to 99, comprising 242 femur fracture (FX) cases and 9,018 non-fracture (NFX) cases. To model the association of the bone's current health status with prevalent FXs, three prediction algorithms-extreme gradient boosting (XGB), support vector machine, and multilayer perceptron-were trained using two-dimensional dual-energy X-ray absorptiometry (2D-DXA) analysis results and subsequently benchmarked. The XGB classifier, which proved most effective, was then further refined using synthetic data generated by the adaptive synthetic oversampler to balance the FX and NFX classes and enhance boundary sharpness for better classification accuracy. The XGB model trained on raw data demonstrated good prediction capabilities, with an area under the curve (AUC) of 0.78 and an F1 score of 0.71 on test cases. The inclusion of synthetic data improved classification accuracy in terms of both specificity and sensitivity, resulting in an AUC of 0.99 and an F1 score of 0.98. The proposed methodology demonstrates that current bone health can be assessed through post-processed results from 2D-DXA analysis. Moreover, it was also shown that synthetic data can help stabilize uneven databases by balancing majority and minority classes, thereby significantly improving classification performance.

Evaluation of an artificial intelligence noise reduction tool for conventional X-ray imaging - a visual grading study of pediatric chest examinations at different radiation dose levels using anthropomorphic phantoms.

Hultenmo M, Pernbro J, Ahlin J, Bonnier M, Båth M

pubmed logopapersMay 13 2025
Noise reduction tools developed with artificial intelligence (AI) may be implemented to improve image quality and reduce radiation dose, which is of special interest in the more radiosensitive pediatric population. The aim of the present study was to examine the effect of the AI-based intelligent noise reduction (INR) on image quality at different dose levels in pediatric chest radiography. Anteroposterior and lateral images of two anthropomorphic phantoms were acquired with both standard noise reduction and INR at different dose levels. In total, 300 anteroposterior and 420 lateral images were included. Image quality was evaluated by three experienced pediatric radiologists. Gradings were analyzed with visual grading characteristics (VGC) resulting in area under the VGC curve (AUC<sub>VGC</sub>) values and associated confidence intervals (CI). Image quality of different anatomical structures and overall clinical image quality were statistically significantly better in the anteroposterior INR images than in the corresponding standard noise reduced images at each dose level. Compared with reference anteroposterior images at a dose level of 100% with standard noise reduction, the image quality of the anteroposterior INR images was graded as significantly better at dose levels of ≥ 80%. Statistical significance was also achieved at lower dose levels for some structures. The assessments of the lateral images showed similar trends but with fewer significant results. The results of the present study indicate that the AI-based INR may potentially be used to improve image quality at a specific dose level or to reduce dose and maintain the image quality in pediatric chest radiography.

A deep learning sex-specific body composition ageing biomarker using dual-energy X-ray absorptiometry scan.

Lian J, Cai P, Huang F, Huang J, Vardhanabhuti V

pubmed logopapersMay 13 2025
Chronic diseases are closely linked to alterations in body composition, yet there is a need for reliable biomarkers to assess disease risk and progression. This study aimed to develop and validate a biological age indicator based on body composition derived from dual-energy X-ray absorptiometry (DXA) scans, offering a novel approach to evaluating health status and predicting disease outcomes. A deep learning model was trained on a reference population from the UK Biobank to estimate body composition biological age (BCBA). The model's performance was assessed across various groups, including individuals with typical and atypical body composition, those with pre-existing diseases, and those who developed diseases after DXA imaging. Key metrics such as c-index were employed to examine BCBA's diagnostic and prognostic potential for type 2 diabetes, major adverse cardiovascular events (MACE), atherosclerotic cardiovascular disease (ASCVD), and hypertension. Here we show that BCBA strongly correlates with chronic disease diagnoses and risk prediction. BCBA demonstrated significant associations with type 2 diabetes (odds ratio 1.08 for females and 1.04 for males, p < 0.0005), MACE (odds ratio 1.10 for females and 1.11 for males, p < 0.0005), ASCVD (odds ratio 1.07 for females and 1.10 for males, p < 0.0005), and hypertension (odds ratio 1.06 for females and 1.04 for males, p < 0.0005). It outperformed standard cardiovascular risk profiles in predicting MACE and ASCVD. BCBA is a promising biomarker for assessing chronic disease risk and progression, with potential to improve clinical decision-making. Its integration into routine health assessments could aid early disease detection and personalised interventions.

Automated field-in-field planning for tangential breast radiation therapy based on digitally reconstructed radiograph.

Srikornkan P, Khamfongkhruea C, Intanin P, Thongsawad S

pubmed logopapersMay 12 2025
The tangential field-in-field (FIF) technique is a widely used method in breast radiation therapy, known for its efficiency and the reduced number of fields required in treatment planning. However, it is labor-intensive, requiring manual shaping of the multileaf collimator (MLC) to minimize hot spots. This study aims to develop a novel automated FIF planning approach for tangential breast radiation therapy using Digitally Reconstructed Radiograph (DRR) images. A total of 78 patients were selected to train and test a fluence map prediction model based on U-Net architecture. DRR images were used as input data to predict the fluence maps. The predicted fluence maps for each treatment plan were then converted into MLC positions and exported as Digital Imaging and Communications in Medicine (DICOM) files. These files were used to recalculate the dose distribution and assess dosimetric parameters for both the PTV and OARs. The mean absolute error (MAE) between the predicted and original fluence map was 0.007 ± 0.002. The result of gamma analysis indicates strong agreement between the predicted and original fluence maps, with gamma passing rate values of 95.47 ± 4.27 for the 3 %/3 mm criteria, 94.65 ± 4.32 for the 3 %/2 mm criteria, and 83.4 ± 12.14 for the 2 %/2 mm criteria. The plan quality, in terms of tumor coverage and doses to organs at risk (OARs), showed no significant differences between the automated FIF and original plans. The automated plans yielded promising results, with plan quality comparable to the original.

Deep Learning for Detecting Periapical Bone Rarefaction in Panoramic Radiographs: A Systematic Review and Critical Assessment.

da Silva-Filho JE, da Silva Sousa Z, de-Araújo APC, Fornagero LDS, Machado MP, de Aguiar AWO, Silva CM, de Albuquerque DF, Gurgel-Filho ED

pubmed logopapersMay 12 2025
To evaluate deep learning (DL)-based models for detecting periapical bone rarefaction (PBRs) in panoramic radiographs (PRs), analyzing their feasibility and performance in dental practice. A search was conducted across seven databases and partial grey literature up to November 15, 2024, using Medical Subject Headings and entry terms related to DL, PBRs, and PRs. Studies assessing DL-based models for detecting and classifying PBRs in conventional PRs were included, while those using non-PR imaging or focusing solely on non-PBR lesions were excluded. Two independent reviewers performed screening, data extraction, and quality assessment using the Quality Assessment of Diagnostic Accuracy Studies-2 tool, with conflicts resolved by a third reviewer. Twelve studies met the inclusion criteria, mostly from Asia (58.3%). The risk of bias was moderate in 10 studies (83.3%) and high in 2 (16.7%). DL models showed moderate to high performance in PBR detection (sensitivity: 26-100%; specificity: 51-100%), with U-NET and YOLO being the most used algorithms. Only one study (8.3%) distinguished Periapical Granuloma from Periapical Cysts, revealing a classification gap. Key challenges included limited generalization due to small datasets, anatomical superimpositions in PRs, and variability in reported metrics, compromising models comparison. This review underscores that DL-based has the potential to become a valuable tool in dental image diagnostics, but it cannot yet be considered a definitive practice. Multicenter collaboration is needed to diversify data and democratize those tools. Standardized performance reporting is critical for fair comparability between different models.

Predicting Knee Osteoarthritis Severity from Radiographic Predictors: Data from the Osteoarthritis Initiative.

Nurmirinta TAT, Turunen MJ, Tohka J, Mononen ME, Liukkonen MK

pubmed logopapersMay 9 2025
In knee osteoarthritis (KOA) treatment, preventive measures to reduce its onset risk are a key factor. Among individuals with radiographically healthy knees, however, future knee joint integrity and condition cannot be predicted by clinically applicable methods. We investigated if knee joint morphology derived from widely accessible and cost-effective radiographs could be helpful in predicting future knee joint integrity and condition. We combined knee joint morphology with known risk predictors such as age, height, and weight. Baseline data were utilized as predictors, and the maximal severity of KOA after 8 years served as a target variable. The three KOA categories in this study were based on Kellgren-Lawrence grading: healthy, moderate, and severe. We employed a two-stage machine learning model that utilized two random forest algorithms. We trained three models: the subject demographics (SD) model utilized only SD; the image model utilized only knee joint morphology from radiographs; the merged model utilized combined predictors. The training data comprised an 8-year follow-up of 1222 knees from 683 individuals. The SD- model obtained a weighted F1 score (WF1) of 77.2% and a balanced accuracy (BA) of 65.6%. The Image-model performance metrics were lowest, with a WF1 of 76.5% and BA of 63.8%. The top-performing merged model achieved a WF1 score of 78.3% and a BA of 68.2%. Our two-stage prediction model provided improved results based on performance metrics, suggesting potential for application in clinical settings.

APD-FFNet: A Novel Explainable Deep Feature Fusion Network for Automated Periodontitis Diagnosis on Dental Panoramic Radiography.

Resul ES, Senirkentli GB, Bostanci E, Oduncuoglu BF

pubmed logopapersMay 9 2025
This study introduces APD-FFNet, a novel, explainable deep learning architecture for automated periodontitis diagnosis using panoramic radiographs. A total of 337 panoramic radiographs, annotated by a periodontist, served as the dataset. APD-FFNet combines custom convolutional and transformer-based layers within a deep feature fusion framework that captures both local and global contextual features. Performance was evaluated using accuracy, the F1 score, the area under the receiver operating characteristic curve, the Jaccard similarity coefficient, and the Matthews correlation coefficient. McNemar's test confirmed statistical significance, and SHapley Additive exPlanations provided interpretability insights. APD-FFNet achieved 94% accuracy, a 93.88% F1 score, 93.47% area under the receiver operating characteristic curve, 88.47% Jaccard similarity coefficient, and 88.46% Matthews correlation coefficient, surpassing comparable approaches. McNemar's test validated these findings (p < 0.05). Explanations generated by SHapley Additive exPlanations highlighted important regions in each radiograph, supporting clinical applicability. By merging convolutional and transformer-based layers, APD-FFNet establishes a new benchmark in automated, interpretable periodontitis diagnosis, with low hyperparameter sensitivity facilitating its integration into regular dental practice. Its adaptable design suggests broader relevance to other medical imaging domains. This is the first feature fusion method specifically devised for periodontitis diagnosis, supported by an expert-curated dataset and advanced explainable artificial intelligence. Its robust accuracy, low hyperparameter sensitivity, and transparent outputs set a new standard for automated periodontal analysis.

Chest X-Ray Visual Saliency Modeling: Eye-Tracking Dataset and Saliency Prediction Model.

Lou J, Wang H, Wu X, Ng JCH, White R, Thakoor KA, Corcoran P, Chen Y, Liu H

pubmed logopapersMay 8 2025
Radiologists' eye movements during medical image interpretation reflect their perceptual-cognitive processes of diagnostic decisions. The eye movement data can be modeled to represent clinically relevant regions in a medical image and potentially integrated into an artificial intelligence (AI) system for automatic diagnosis in medical imaging. In this article, we first conduct a large-scale eye-tracking study involving 13 radiologists interpreting 191 chest X-ray (CXR) images, establishing a best-of-its-kind CXR visual saliency benchmark. We then perform analysis to quantify the reliability and clinical relevance of saliency maps (SMs) generated for CXR images. We develop CXR image saliency prediction method (CXRSalNet), a novel saliency prediction model that leverages radiologists' gaze information to optimize the use of unlabeled CXR images, enhancing training and mitigating data scarcity. We also demonstrate the application of our CXR saliency model in enhancing the performance of AI-powered diagnostic imaging systems.
Page 1 of 217 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.