Sort by:
Page 1 of 326 results
Next

SurgPointTransformer: transformer-based vertebra shape completion using RGB-D imaging.

Massalimova A, Liebmann F, Jecklin S, Carrillo F, Farshad M, Fürnstahl P

pubmed logopapersDec 1 2025
State-of-the-art computer- and robot-assisted surgery systems rely on intraoperative imaging technologies such as computed tomography and fluoroscopy to provide detailed 3D visualizations of patient anatomy. However, these methods expose both patients and clinicians to ionizing radiation. This study introduces a radiation-free approach for 3D spine reconstruction using RGB-D data. Inspired by the "mental map" surgeons form during procedures, we present SurgPointTransformer, a shape completion method that reconstructs unexposed spinal regions from sparse surface observations. The method begins with a vertebra segmentation step that extracts vertebra-level point clouds for subsequent shape completion. SurgPointTransformer then uses an attention mechanism to learn the relationship between visible surface features and the complete spine structure. The approach is evaluated on an <i>ex vivo</i> dataset comprising nine samples, with CT-derived data used as ground truth. SurgPointTransformer significantly outperforms state-of-the-art baselines, achieving a Chamfer distance of 5.39 mm, an F-score of 0.85, an Earth mover's distance of 11.00 and a signal-to-noise ratio of 22.90 dB. These results demonstrate the potential of our method to reconstruct 3D vertebral shapes without exposing patients to ionizing radiation. This work contributes to the advancement of computer-aided and robot-assisted surgery by enhancing system perception and intelligence.

A novel deep learning framework for retinal disease detection leveraging contextual and local features cues from retinal images.

Khan SD, Basalamah S, Lbath A

pubmed logopapersJul 1 2025
Retinal diseases are a serious global threat to human vision, and early identification is essential for effective prevention and treatment. However, current diagnostic methods rely on manual analysis of fundus images, which heavily depends on the expertise of ophthalmologists. This manual process is time-consuming and labor-intensive and can sometimes lead to missed diagnoses. With advancements in computer vision technology, several automated models have been proposed to improve diagnostic accuracy for retinal diseases and medical imaging in general. However, these methods face challenges in accurately detecting specific diseases within images due to inherent issues associated with fundus images, including inter-class similarities, intra-class variations, limited local information, insufficient contextual understanding, and class imbalances within datasets. To address these challenges, we propose a novel deep learning framework for accurate retinal disease classification. This framework is designed to achieve high accuracy in identifying various retinal diseases while overcoming inherent challenges associated with fundus images. Generally, the framework consists of three main modules. The first module is Densely Connected Multidilated Convolution Neural Network (DCM-CNN) that extracts global contextual information by effectively integrating novel Casual Dilated Dense Convolutional Blocks (CDDCBs). The second module of the framework, namely, Local-Patch-based Convolution Neural Network (LP-CNN), utilizes Class Activation Map (CAM) (obtained from DCM-CNN) to extract local and fine-grained information. To identify the correct class and minimize the error, a synergic network is utilized that takes the feature maps of both DCM-CNN and LP-CNN and connects both maps in a fully connected fashion to identify the correct class and minimize the errors. The framework is evaluated through a comprehensive set of experiments, both quantitatively and qualitatively, using two publicly available benchmark datasets: RFMiD and ODIR-5K. Our experimental results demonstrate the effectiveness of the proposed framework and achieves higher performance on RFMiD and ODIR-5K datasets compared to reference methods.

Integrating prior knowledge with deep learning for optimized quality control in corneal images: A multicenter study.

Li FF, Li GX, Yu XX, Zhang ZH, Fu YN, Wu SQ, Wang Y, Xiao C, Ye YF, Hu M, Dai Q

pubmed logopapersJul 1 2025
Artificial intelligence (AI) models are effective for analyzing high-quality slit-lamp images but often face challenges in real-world clinical settings due to image variability. This study aims to develop and evaluate a hybrid AI-based image quality control system to classify slit-lamp images, improving diagnostic accuracy and efficiency, particularly in telemedicine applications. Cross-sectional study. Our Zhejiang Eye Hospital dataset comprised 2982 slit-lamp images as the internal dataset. Two external datasets were included: 13,554 images from the Aier Guangming Eye Hospital (AGEH) and 9853 images from the First People's Hospital of Aksu District in Xinjiang (FPH of Aksu). We developed a Hybrid Prior-Net (HP-Net), a novel network that combines a ResNet-based classification branch with a prior knowledge branch leveraging Hough circle transform and frequency domain blur detection. The two branches' features are channel-wise concatenated at the fully connected layer, enhancing representational power and improving the network's ability to classify eligible, misaligned, blurred, and underexposed corneal images. Model performance was evaluated using metrics such as accuracy, precision, recall, specificity, and F1-score, and compared against the performance of other deep learning models. The HP-Net outperformed all other models, achieving an accuracy of 99.03 %, precision of 98.21 %, recall of 95.18 %, specificity of 99.36 %, and an F1-score of 96.54 % in image classification. The results demonstrated that HP-Net was also highly effective in filtering slit-lamp images from the other two datasets, AGEH and FPH of Aksu with accuracies of 97.23 % and 96.97 %, respectively. These results underscore the superior feature extraction and classification capabilities of HP-Net across all evaluated metrics. Our AI-based image quality control system offers a robust and efficient solution for classifying corneal images, with significant implications for telemedicine applications. By incorporating slightly blurred but diagnostically usable images into training datasets, the system enhances the reliability and adaptability of AI tools for medical imaging quality control, paving the way for more accurate and efficient diagnostic workflows.

Comparative Analysis of Automated vs. Expert-Designed Machine Learning Models in Age-Related Macular Degeneration Detection and Classification.

Durmaz Engin C, Beşenk U, Özizmirliler D, Selver MA

pubmed logopapersJun 25 2025
To compare the effectiveness of expert-designed machine learning models and code-free automated machine learning (AutoML) models in classifying optical coherence tomography (OCT) images for detecting age-related macular degeneration (AMD) and distinguishing between its dry and wet forms. Custom models were developed by an artificial intelligence expert using the EfficientNet V2 architecture, while AutoML models were created by an ophthalmologist utilizing LobeAI with transfer learning via ResNet-50 V2. Both models were designed to differentiate normal OCT images from AMD and to also distinguish between dry and wet AMD. The models were trained and tested using an 80:20 split, with each diagnostic group containing 500 OCT images. Performance metrics, including sensitivity, specificity, accuracy, and F1 scores, were calculated and compared. The expert-designed model achieved an overall accuracy of 99.67% for classifying all images, with F1 scores of 0.99 or higher across all binary class comparisons. In contrast, the AutoML model achieved an overall accuracy of 89.00%, with F1 scores ranging from 0.86 to 0.90 in binary comparisons. Notably lower recall was observed for dry AMD vs. normal (0.85) in the AutoML model, indicating challenges in correctly identifying dry AMD. While the AutoML models demonstrated acceptable performance in identifying and classifying AMD cases, the expert-designed models significantly outperformed them. The use of advanced neural network architectures and rigorous optimization in the expert-developed models underscores the continued necessity of expert involvement in the development of high-precision diagnostic tools for medical image classification.

Artificial intelligence for age-related macular degeneration diagnosis in Australia: A Novel Qualitative Interview Study.

Ly A, Herse S, Williams MA, Stapleton F

pubmed logopapersJun 14 2025
Artificial intelligence (AI) systems for age-related macular degeneration (AMD) diagnosis abound but are not yet widely implemented. AI implementation is complex, requiring the involvement of multiple, diverse stakeholders including technology developers, clinicians, patients, health networks, public hospitals, private providers and payers. There is a pressing need to investigate how AI might be adopted to improve patient outcomes. The purpose of this first study of its kind was to use the AI translation extended version of the non-adoption, abandonment, scale-up, spread and sustainability of healthcare technologies framework to explore stakeholder experiences, attitudes, enablers, barriers and possible futures of digital diagnosis using AI for AMD and eyecare in Australia. Semi-structured, online interviews were conducted with 37 stakeholders (12 clinicians, 10 healthcare leaders, 8 patients and 7 developers) from September 2022 to March 2023. The interviews were audio-recorded, transcribed and analysed using directed and summative content analysis. Technological features influencing implementation were most frequently discussed, followed by the context or wider system, value proposition, adopters, organisations, the condition and finally embedding the adaptation. Patients preferred to focus on the condition, while healthcare leaders elaborated on organisation factors. Overall, stakeholders supported a portable, device-independent clinical decision support tool that could be integrated with existing diagnostic equipment and patient management systems. Opportunities for AI to drive new models of healthcare, patient education and outreach, and the importance of maintaining equity across population groups were consistently emphasised. This is the first investigation to report numerous, interacting perspectives on the adoption of digital diagnosis for AMD in Australia, incorporating an intentionally diverse stakeholder group and the patient voice. It provides a series of practical considerations for the implementation of AI and digital diagnosis into existing care for people with AMD.

Advances in disease detection through retinal imaging: A systematic review.

Bilal H, Keles A, Bendechache M

pubmed logopapersJun 6 2025
Ocular and non-ocular diseases significantly impact millions of people worldwide, leading to vision impairment or blindness if not detected and managed early. Many individuals could be prevented from becoming blind by treating these diseases early on and stopping their progression. Despite advances in medical imaging and diagnostic tools, the manual detection of these diseases remains labor-intensive, time-consuming, and dependent on the expert's experience. Computer-aided diagnosis (CAD) has been transformed by machine learning (ML), providing promising methods for the automated detection and grading of diseases using various retinal imaging modalities. In this paper, we present a comprehensive systematic literature review that discusses the use of ML techniques to detect diseases from retinal images, utilizing both single and multi-modal imaging approaches. We analyze the efficiency of various Deep Learning and classical ML models, highlighting their achievements in accuracy, sensitivity, and specificity. Even with these advancements, the review identifies several critical challenges. We propose future research directions to address these issues. By overcoming these challenges, the potential of ML to enhance diagnostic accuracy and patient outcomes can be fully realized, opening the way for more reliable and effective ocular and non-ocular disease management.

Robust Uncertainty-Informed Glaucoma Classification Under Data Shift.

Rashidisabet H, Chan RVP, Leiderman YI, Vajaranant TS, Yi D

pubmed logopapersJun 2 2025
Standard deep learning (DL) models often suffer significant performance degradation on out-of-distribution (OOD) data, where test data differs from training data, a common challenge in medical imaging due to real-world variations. We propose a unified self-censorship framework as an alternative to the standard DL models for glaucoma classification using deep evidential uncertainty quantification. Our approach detects OOD samples at both the dataset and image levels. Dataset-level self-censorship enables users to accept or reject predictions for an entire new dataset based on model uncertainty, whereas image-level self-censorship refrains from making predictions on individual OOD images rather than risking incorrect classifications. We validated our approach across diverse datasets. Our dataset-level self-censorship method outperforms the standard DL model in OOD detection, achieving an average 11.93% higher area under the curve (AUC) across 14 OOD datasets. Similarly, our image-level self-censorship model improves glaucoma classification accuracy by an average of 17.22% across 4 external glaucoma datasets against baselines while censoring 28.25% more data. Our approach addresses the challenge of generalization in standard DL models for glaucoma classification across diverse datasets by selectively withholding predictions when the model is uncertain. This method reduces misclassification errors compared to state-of-the-art baselines, particularly for OOD cases. This study introduces a tunable framework that explores the trade-off between prediction accuracy and data retention in glaucoma prediction. By managing uncertainty in model outputs, the approach lays a foundation for future decision support tools aimed at improving the reliability of automated glaucoma diagnosis.

Fast aberration correction in 3D transcranial photoacoustic computed tomography via a learning-based image reconstruction method.

Huang HK, Kuo J, Zhang Y, Aborahama Y, Cui M, Sastry K, Park S, Villa U, Wang LV, Anastasio MA

pubmed logopapersJun 1 2025
Transcranial photoacoustic computed tomography (PACT) holds significant potential as a neuroimaging modality. However, compensating for skull-induced aberrations in reconstructed images remains a challenge. Although optimization-based image reconstruction methods (OBRMs) can account for the relevant wave physics, they are computationally demanding and generally require accurate estimates of the skull's viscoelastic parameters. To circumvent these issues, a learning-based image reconstruction method was investigated for three-dimensional (3D) transcranial PACT. The method was systematically assessed in virtual imaging studies that involved stochastic 3D numerical head phantoms and applied to experimental data acquired by use of a physical head phantom that involved a human skull. The results demonstrated that the learning-based method yielded accurate images and exhibited robustness to errors in the assumed skull properties, while substantially reducing computational times compared to an OBRM. To the best of our knowledge, this is the first demonstration of a learned image reconstruction method for 3D transcranial PACT.

Ocular Imaging Challenges, Current State, and a Path to Interoperability: A HIMSS-SIIM Enterprise Imaging Community Whitepaper.

Goetz KE, Boland MV, Chu Z, Reed AA, Clark SD, Towbin AJ, Purt B, O'Donnell K, Bui MM, Eid M, Roth CJ, Luviano DM, Folio LR

pubmed logopapersJun 1 2025
Office-based testing, enhanced by advances in imaging technology, is routinely used in eye care to non-invasively assess ocular structure and function. This type of imaging coupled with autonomous artificial intelligence holds immense opportunity to diagnose eye diseases quickly. Despite the wide availability and use of ocular imaging, there are several factors that hinder optimization of clinical practice and patient care. While some large institutions have developed end-to-end digital workflows that utilize electronic health records, enterprise imaging archives, and dedicated diagnostic viewers, this experience has not yet made its way to smaller and independent eye clinics. Fractured interoperability practices impact patient care in all healthcare domains, including eye care where there is a scarcity of care centers, making collaboration essential among providers, specialists, and primary care who might be treating systemic conditions with profound impact on vision. The purpose of this white paper is to describe the current state of ocular imaging by focusing on the challenges related to interoperability, reporting, and clinical workflow.

Development and validation of a 3-D deep learning system for diabetic macular oedema classification on optical coherence tomography images.

Zhu H, Ji J, Lin JW, Wang J, Zheng Y, Xie P, Liu C, Ng TK, Huang J, Xiong Y, Wu H, Lin L, Zhang M, Zhang G

pubmed logopapersMay 31 2025
To develop and validate an automated diabetic macular oedema (DME) classification system based on the images from different three-dimensional optical coherence tomography (3-D OCT) devices. A multicentre, platform-based development study using retrospective and cross-sectional data. Data were subjected to a two-level grading system by trained graders and a retina specialist, and categorised into three types: no DME, non-centre-involved DME and centre-involved DME (CI-DME). The 3-D convolutional neural networks algorithm was used for DME classification system development. The deep learning (DL) performance was compared with the diabetic retinopathy experts. Data were collected from Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Chaozhou People's Hospital and The Second Affiliated Hospital of Shantou University Medical College from January 2010 to December 2023. 7790 volumes of 7146 eyes from 4254 patients were annotated, of which 6281 images were used as the development set and 1509 images were used as the external validation set, split based on the centres. Accuracy, F1-score, sensitivity, specificity, area under receiver operating characteristic curve (AUROC) and Cohen's kappa were calculated to evaluate the performance of the DL algorithm. In classifying DME with non-DME, our model achieved an AUROCs of 0.990 (95% CI 0.983 to 0.996) and 0.916 (95% CI 0.902 to 0.930) for hold-out testing dataset and external validation dataset, respectively. To distinguish CI-DME from non-centre-involved-DME, our model achieved AUROCs of 0.859 (95% CI 0.812 to 0.906) and 0.881 (95% CI 0.859 to 0.902), respectively. In addition, our system showed comparable performance (Cohen's κ: 0.85 and 0.75) to the retina experts (Cohen's κ: 0.58-0.92 and 0.70-0.71). Our DL system achieved high accuracy in multiclassification tasks on DME classification with 3-D OCT images, which can be applied to population-based DME screening.
Page 1 of 326 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.