Sort by:
Page 1 of 52515 results
Next

Cerebral ischemia detection using deep learning techniques.

Pastor-Vargas R, Antón-Munárriz C, Haut JM, Robles-Gómez A, Paoletti ME, Benítez-Andrades JA

pubmed logopapersDec 1 2025
Cerebrovascular accident (CVA), commonly known as stroke, stands as a significant contributor to contemporary mortality and morbidity rates, often leading to lasting disabilities. Early identification is crucial in mitigating its impact and reducing mortality. Non-contrast computed tomography (NCCT) remains the primary diagnostic tool in stroke emergencies due to its speed, accessibility, and cost-effectiveness. NCCT enables the exclusion of hemorrhage and directs attention to ischemic causes resulting from arterial flow obstruction. Quantification of NCCT findings employs the Alberta Stroke Program Early Computed Tomography Score (ASPECTS), which evaluates affected brain structures. This study seeks to identify early alterations in NCCT density in patients with stroke symptoms using a binary classifier distinguishing NCCT scans with and without stroke. To achieve this, various well-known deep learning architectures, namely VGG3D, ResNet3D, and DenseNet3D, validated in the ImageNet challenges, are implemented with 3D images covering the entire brain volume. The training results of these networks are presented, wherein diverse parameters are examined for optimal performance. The DenseNet3D network emerges as the most effective model, attaining a training set accuracy of 98% and a test set accuracy of 95%. The aim is to alert medical professionals to potential stroke cases in their early stages based on NCCT findings displaying altered density patterns.

Convolutional autoencoder-based deep learning for intracerebral hemorrhage classification using brain CT images.

Nageswara Rao B, Acharya UR, Tan RS, Dash P, Mohapatra M, Sabut S

pubmed logopapersDec 1 2025
Intracerebral haemorrhage (ICH) is a common form of stroke that affects millions of people worldwide. The incidence is associated with a high rate of mortality and morbidity. Accurate diagnosis using brain non-contrast computed tomography (NCCT) is crucial for decision-making on potentially life-saving surgery. Limited access to expert readers and inter-observer variability imposes barriers to timeous and accurate ICH diagnosis. We proposed a hybrid deep learning model for automated ICH diagnosis using NCCT images, which comprises a convolutional autoencoder (CAE) to extract features with reduced data dimensionality and a dense neural network (DNN) for classification. In order to ensure that the model generalizes to new data, we trained it using tenfold cross-validation and holdout methods. Principal component analysis (PCA) based dimensionality reduction and classification is systematically implemented for comparison. The study dataset comprises 1645 ("ICH" class) and 1648 ("Normal" class belongs to patients with non-hemorrhagic stroke) labelled images obtained from 108 patients, who had undergone CT examination on a 64-slice computed tomography scanner at Kalinga Institute of Medical Sciences between 2020 and 2023. Our developed CAE-DNN hybrid model attained 99.84% accuracy, 99.69% sensitivity, 100% specificity, 100% precision, and 99.84% F1-score, which outperformed the comparator PCA-DNN model as well as the published results in the literature. In addition, using saliency maps, our CAE-DNN model can highlight areas on the images that are closely correlated with regions of ICH, which have been manually contoured by expert readers. The CAE-DNN model demonstrates the proof-of-concept for accurate ICH detection and localization, which can potentially be implemented to prioritize the treatment using NCCT images in clinical settings.

The performance of artificial intelligence in image-based prediction of hematoma enlargement: a systematic review and meta-analysis.

Fan W, Wu Z, Zhao W, Jia L, Li S, Wei W, Chen X

pubmed logopapersDec 1 2025
Accurately predicting hematoma enlargement (HE) is crucial for improving the prognosis of patients with cerebral haemorrhage. Artificial intelligence (AI) is a potentially reliable assistant for medical image recognition. This study systematically reviews medical imaging articles on the predictive performance of AI in HE. Retrieved relevant studies published before October, 2024 from Embase, Institute of Electrical and Electronics Engineers (IEEE), PubMed, Web of Science, and Cochrane Library databases. The diagnostic test of predicting hematoma enlargement based on CT image training artificial intelligence model, and reported 2 × 2 contingency tables or provided sensitivity (SE) and specificity (SP) for calculation. Two reviewers independently screened the retrieved citations and extracted data. The methodological quality of studies was assessed using the QUADAS-AI, and Preferred Reporting Items for Systematic reviews and Meta-Analyses was used to ensure standardised reporting of studies. Subgroup analysis was performed based on sample size, risk of bias, year of publication, ratio of training set to test set, and number of centres involved. 36 articles were included in this Systematic review to qualitative analysis, of which 23 have sufficient information for further quantitative analysis. Among these articles, there are a total of 7 articles used deep learning (DL) and 16 articles used machine learning (ML). The comprehensive SE and SP of ML are 78% (95% CI: 69-85%) and 85% (78-90%), respectively, while the AUC is 0.89 (0.86-0.91). The SE and SP of DL was 87% (95% CI: 80-92%) and 75% (67-81%), respectively, with an AUC of 0.88 (0.85-0.91). The subgroup analysis found that when the ratio of the training set to the test set is 7:3, the sensitivity is 0.77(0.62-0.91), <i>p</i> = 0.03; In terms of specificity, the group with sample size more than 200 has higher specificity, which is 0.83 (0.75-0.92), <i>p</i> = 0.02; among the risk groups in the study design, the specificity of the risk group was higher, which was 0.83 (0.76-0.89), <i>p</i> = 0.02. The group specificity of articles published before 2021 was higher, 0.84 (0.77-0.90); and the specificity of data from a single research centre was higher, which was 0.85 (0.80-0.91), <i>p</i> < 0.001. Artificial intelligence algorithms based on imaging have shown good performance in predicting HE.

TFKT V2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment.

Rifa KR, Ahamed MA, Zhang J, Imran A

pubmed logopapersSep 1 2025
The accurate assessment of computed tomography (CT) image quality is crucial for ensuring diagnostic reliability while minimizing radiation dose. Radiologists' evaluations are time-consuming and labor-intensive. Existing automated approaches often require large CT datasets with predefined image quality assessment (IQA) scores, which often do not align well with clinical evaluations. We aim to develop a reference-free, automated method for CT IQA that closely reflects radiologists' evaluations, reducing the dependency on large annotated datasets. We propose Task-Focused Knowledge Transfer (TFKT), a deep learning-based IQA method leveraging knowledge transfer from task-similar natural image datasets. TFKT incorporates a hybrid convolutional neural network-transformer model, enabling accurate quality predictions by learning from natural image distortions with human-annotated mean opinion scores. The model is pre-trained on natural image datasets and fine-tuned on low-dose computed tomography perceptual image quality assessment data to ensure task-specific adaptability. Extensive evaluations demonstrate that the proposed TFKT method effectively predicts IQA scores aligned with radiologists' assessments on in-domain datasets and generalizes well to out-of-domain clinical pediatric CT exams. The model achieves robust performance without requiring high-dose reference images. Our model is capable of assessing the quality of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo> <mn>30</mn></mrow> </math> CT image slices in a second. The proposed TFKT approach provides a scalable, accurate, and reference-free solution for CT IQA. The model bridges the gap between traditional and deep learning-based IQA, offering clinically relevant and computationally efficient assessments applicable to real-world clinical settings.

Agreement between Routine-Dose and Lower-Dose CT with and without Deep Learning-based Denoising for Active Surveillance of Solid Small Renal Masses: A Multiobserver Study.

Borgbjerg J, Breen BS, Kristiansen CH, Larsen NE, Medrud L, Mikalone R, Müller S, Naujokaite G, Negård A, Nielsen TK, Salte IM, Frøkjær JB

pubmed logopapersJul 1 2025
Purpose To assess the agreement between routine-dose (RD) and lower-dose (LD) contrast-enhanced CT scans, with and without Digital Imaging and Communications in Medicine-based deep learning-based denoising (DLD), in evaluating small renal masses (SRMs) during active surveillance. Materials and Methods In this retrospective study, CT scans from patients undergoing active surveillance for an SRM were included. Using a validated simulation technique, LD CT images were generated from the RD images to simulate 75% (LD75) and 90% (LD90) radiation dose reductions. Two additional LD image sets, in which the DLD was applied (LD75-DLD and LD90-DLD), were generated. Between January 2023 and June 2024, nine radiologists from three institutions independently evaluated 350 CT scans across five datasets for tumor size, tumor nearness to the collecting system (TN), and tumor shape irregularity (TSI), and interobserver reproducibility and agreement were assessed using the 95% limits of agreement with the mean (LOAM) and Gwet AC2 coefficient, respectively. Subjective and quantitative image quality assessments were also performed. Results The study sample included 70 patients (mean age, 73.2 years ± 9.2 [SD]; 48 male, 22 female). LD75 CT was found to be in agreement with RD scans for assessing SRM diameter, with a LOAM of ±2.4 mm (95% CI: 2.3, 2.6) for LD75 compared with ±2.2 mm (95% CI: 2.1, 2.4) for RD. However, a 90% dose reduction compromised reproducibility (LOAM ±3.0 mm; 95% CI: 2.8, 3.2). LD90-DLD preserved measurement reproducibility (LOAM ±2.4 mm; 95% CI: 2.3, 2.6). Observer agreement was comparable between TN and TSI assessments across all image sets, with no statistically significant differences identified (all comparisons <i>P</i> ≥ .35 for TN and <i>P</i> ≥ .02 for TSI; Holm-corrected significance threshold, <i>P</i> = .013). Subjective and quantitative image quality assessments confirmed that DLD effectively restored image quality at reduced dose levels: LD75-DLD had the highest overall image quality, significantly lower noise, and improved contrast-to-noise ratio compared with RD (<i>P</i> < .001). Conclusion A 75% reduction in radiation dose is feasible for SRM assessment in active surveillance using CT with a conventional iterative reconstruction technique, whereas applying DLD allows submillisievert dose reduction. <b>Keywords:</b> CT, Urinary, Kidney, Radiation Safety, Observer Performance, Technology Assessment <i>Supplemental material is available for this article.</i> © RSNA, 2025 See also commentary by Muglia in this issue.

Deep Learning for Detecting and Subtyping Renal Cell Carcinoma on Contrast-Enhanced CT Scans Using 2D Neural Network with Feature Consistency Techniques.

Gupta A, Dhanakshirur RR, Jain K, Garg S, Yadav N, Seth A, Das CJ

pubmed logopapersJul 1 2025
<b>Objective</b>  The aim of this study was to explore an innovative approach for developing deep learning (DL) algorithm for renal cell carcinoma (RCC) detection and subtyping on computed tomography (CT): clear cell RCC (ccRCC) versus non-ccRCC using two-dimensional (2D) neural network architecture and feature consistency modules. <b>Materials and Methods</b>  This retrospective study included baseline CT scans from 196 histopathologically proven RCC patients: 143 ccRCCs and 53 non-ccRCCs. Manual tumor annotations were performed on axial slices of corticomedullary phase images, serving as ground truth. After image preprocessing, the dataset was divided into training, validation, and testing subsets. The study tested multiple 2D DL architectures, with the FocalNet-DINO demonstrating highest effectiveness in detecting and classifying RCC. The study further incorporated spatial and class consistency modules to enhance prediction accuracy. Models' performance was evaluated using free-response receiver operating characteristic curves, recall rates, specificity, accuracy, F1 scores, and area under the curve (AUC) scores. <b>Results</b>  The FocalNet-DINO architecture achieved the highest recall rate of 0.823 at 0.025 false positives per image (FPI) for RCC detection. The integration of spatial and class consistency modules into the architecture led to 0.2% increase in recall rate at 0.025 FPI, along with improvements of 0.1% in both accuracy and AUC scores for RCC classification. These enhancements allowed detection of cancer in an additional 21 slices and reduced false positives in 126 slices. <b>Conclusion</b>  This study demonstrates high performance for RCC detection and classification using DL algorithm leveraging 2D neural networks and spatial and class consistency modules, to offer a novel, computationally simpler, and accurate DL approach to RCC characterization.

Predicting Primary Graft Dysfunction in Systemic Sclerosis Lung Transplantation Using Machine-Learning and CT Features.

Singh J, Meng X, Leader JK, Ryan J, Pu L, Deitz R, Chan EG, Shigemura N, Hage CA, Sanchez PG, Pu J

pubmed logopapersJul 1 2025
Primary graft dysfunction (PGD) is a significant barrier to survival in lung transplant (LTx) recipients. PGD in patients with systemic sclerosis (SSc) remains especially underrepresented in research. We investigated 92 SSc recipients (mean age 51 years ± 10) who underwent bilateral LTx between 2007 and 2020. PGD was defined as grade 3 PGD at 72 h post-LTx. A comprehensive set of CT image features was automatically computed from recipient chest CT scans using deep learning algorithms. Volumetric analysis of recipients' lungs and chest cavity was used to estimate lung-size matching. Four machine learning (ML) algorithms were developed to predict PGD, including multivariate logistic regression, support vector machine (SVM), random forest classifier (RFC), and multilayer perceptron (MLP). PGD was significantly associated with BMI >30 kg/m<sup>2</sup> (p = 0.009), African American race (p = 0.011), lower Preop FEV1 (p = 0.002) and FVC (p = 0.004), longer waitlist time (p = 0.014), higher lung allocation score (LAS) (p = 0.028), and interstitial lung disease (p = 0.050). From CT analysis, PGD was significantly associated with decreased lung volume (p < 0.001), increased heart-chest cavity volume ratio (p < 0.001), epicardial (p = 0.033) and total heart (p = 0.049) adipose tissue, and five cardiopulmonary features (p < 0.050). Oversized donor allografts estimated using CT analysis were significantly associated with PGD (p < 0.050). The MLP model achieved a maximum AUROC of 0.85 (95% CI: 0.81-0.88) in predicting PGD with four features: Preop FEV1, heart-chest cavity volume ratio, waitlist time, and donor to recipient chest cavity volume ratio. CT-derived features are significantly associated with PGD, and models incorporating these features can predict PGD in SSc recipients.

Mechanically assisted non-invasive ventilation for liver SABR: Improve CBCT, treat more accurately.

Pierrard J, Audag N, Massih CA, Garcia MA, Moreno EA, Colot A, Jardinet S, Mony R, Nevez Marques AF, Servaes L, Tison T, den Bossche VV, Etume AW, Zouheir L, Ooteghem GV

pubmed logopapersJul 1 2025
Cone-beam computed tomography (CBCT) for image-guided radiotherapy (IGRT) during liver stereotactic ablative radiotherapy (SABR) is degraded by respiratory motion artefacts, potentially jeopardising treatment accuracy. Mechanically assisted non-invasive ventilation-induced breath-hold (MANIV-BH) can reduce these artefacts. This study compares MANIV-BH and free-breathing CBCTs regarding image quality, IGRT variability, automatic registration accuracy, and deep-learning auto-segmentation performance. Liver SABR CBCTs were presented blindly to 14 operators: 25 patients with FB and 25 with MANIV-BH. They rated CBCT quality and IGRT ease (rigid registration with planning CT). Interoperator IGRT variability was compared between FB and MANIV-BH. Automatic gross tumour volume (GTV) mapping accuracy was compared using automatic rigid registration and image-guided deformable registration. Deep-learning organ-at-risk (OAR) auto-segmentation was rated by an operator, who recorded the time dedicated for manual correction of these volumes. MANIV-BH significantly improved CBCT image quality ("Excellent"/"Good": 83.4 % versus 25.4 % with FB, p < 0.001), facilitated IGRT ("Very easy"/"Easy": 68.0 % versus 38.9 % with FB, p < 0.001), and reduced IGRT variability, particularly for trained operators (overall variability of 3.2 mm versus 4.6 mm with FB, p = 0.010). MANIV-BH improved deep-learning auto-segmentation performance (80.0 % rated "Excellent"/"Good" versus 4.0 % with FB, p < 0.001), and reduced median manual correction time by 54.2 % compared to FB (p < 0.001). However, automatic GTV mapping accuracy was not significantly different between MANIV-BH and FB. In liver SABR, MANIV-BH significantly improves CBCT quality, reduces interoperator IGRT variability, and enhances OAR auto-segmentation. Beyond being safe and effective for respiratory motion mitigation, MANIV increases accuracy during treatment delivery, although its implementation requires resources.

Acquisition and Reconstruction Techniques for Coronary CT Angiography: Current Status and Trends over the Past Decade.

Fukui R, Harashima S, Samejima W, Shimizu Y, Washizuka F, Kariyasu T, Nishikawa M, Yamaguchi H, Takeuchi H, Machida H

pubmed logopapersJul 1 2025
Coronary CT angiography (CCTA) has been widely used as a noninvasive modality for accurate assessment of coronary artery disease (CAD) in clinical settings. However, the following limitations of CCTA remain issues of interest: motion, stair-step, and blooming artifacts; suboptimal image noise; ionizing radiation exposure; administration of contrast medium; and complex imaging workflow. Various acquisition and reconstruction techniques have been introduced over the past decade to overcome these limitations. Low-tube-voltage acquisition using a high-output x-ray tube can reasonably reduce the contrast medium and radiation dose. Fast x-ray tube and gantry rotation, dual-source CT, and a motion-correction algorithm (MCA) can improve temporal resolution and reduce coronary motion artifacts. High-definition CT (HDCT), ultrahigh-resolution CT (UHRCT), and superresolution deep learning reconstruction (DLR) algorithms can improve the spatial resolution and delineation of the vessel lumen with coronary calcifications or stents by reducing blooming artifacts. Whole-heart coverage using area-detector CT can eliminate stair-step artifacts. The DLR algorithm can effectively reduce image noise and radiation dose while maintaining image quality, particularly during high-resolution acquisition using HDCT or UHRCT, during low-tube-voltage acquisition, or when imaging patients with a large body habitus. Automatic cardiac protocol selection, automatic optimal cardiac phase selection, and MCA can improve the imaging workflow for each CCTA examination. A sufficient understanding of current and novel acquisition and reconstruction techniques is important to enhance the clinical value of CCTA for noninvasive assessment of CAD. <sup>©</sup>RSNA, 2025 Supplemental material is available for this article.
Page 1 of 52515 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.