Sort by:
Page 1 of 19 results

Challenges in Implementing Artificial Intelligence in Breast Cancer Screening Programs: Systematic Review and Framework for Safe Adoption.

Goh S, Goh RSJ, Chong B, Ng QX, Koh GCH, Ngiam KY, Hartman M

pubmed logopapersMay 15 2025
Artificial intelligence (AI) studies show promise in enhancing accuracy and efficiency in mammographic screening programs worldwide. However, its integration into clinical workflows faces several challenges, including unintended errors, the need for professional training, and ethical concerns. Notably, specific frameworks for AI imaging in breast cancer screening are still lacking. This study aims to identify the challenges associated with implementing AI in breast screening programs and to apply the Consolidated Framework for Implementation Research (CFIR) to discuss a practical governance framework for AI in this context. Three electronic databases (PubMed, Embase, and MEDLINE) were searched using combinations of the keywords "artificial intelligence," "regulation," "governance," "breast cancer," and "screening." Original studies evaluating AI in breast cancer detection or discussing challenges related to AI implementation in this setting were eligible for review. Findings were narratively synthesized and subsequently mapped directly onto the constructs within the CFIR. A total of 1240 results were retrieved, with 20 original studies ultimately included in this systematic review. The majority (n=19) focused on AI-enhanced mammography, while 1 addressed AI-enhanced ultrasound for women with dense breasts. Most studies originated from the United States (n=5) and the United Kingdom (n=4), with publication years ranging from 2019 to 2023. The quality of papers was rated as moderate to high. The key challenges identified were reproducibility, evidentiary standards, technological concerns, trust issues, as well as ethical, legal, societal concerns, and postadoption uncertainty. By aligning these findings with the CFIR constructs, action plans targeting the main challenges were incorporated into the framework, facilitating a structured approach to addressing these issues. This systematic review identifies key challenges in implementing AI in breast cancer screening, emphasizing the need for consistency, robust evidentiary standards, technological advancements, user trust, ethical frameworks, legal safeguards, and societal benefits. These findings can serve as a blueprint for policy makers, clinicians, and AI developers to collaboratively advance AI adoption in breast cancer screening. PROSPERO CRD42024553889; https://tinyurl.com/mu4nwcxt.

Scientific Evidence for Clinical Text Summarization Using Large Language Models: Scoping Review.

Bednarczyk L, Reichenpfader D, Gaudet-Blavignac C, Ette AK, Zaghir J, Zheng Y, Bensahla A, Bjelogrlic M, Lovis C

pubmed logopapersMay 15 2025
Information overload in electronic health records requires effective solutions to alleviate clinicians' administrative tasks. Automatically summarizing clinical text has gained significant attention with the rise of large language models. While individual studies show optimism, a structured overview of the research landscape is lacking. This study aims to present the current state of the art on clinical text summarization using large language models, evaluate the level of evidence in existing research and assess the applicability of performance findings in clinical settings. This scoping review complied with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Literature published between January 1, 2019, and June 18, 2024, was identified from 5 databases: PubMed, Embase, Web of Science, IEEE Xplore, and ACM Digital Library. Studies were excluded if they did not describe transformer-based models, did not focus on clinical text summarization, did not engage with free-text data, were not original research, were nonretrievable, were not peer-reviewed, or were not in English, French, Spanish, or German. Data related to study context and characteristics, scope of research, and evaluation methodologies were systematically collected and analyzed by 3 authors independently. A total of 30 original studies were included in the analysis. All used observational retrospective designs, mainly using real patient data (n=28, 93%). The research landscape demonstrated a narrow research focus, often centered on summarizing radiology reports (n=17, 57%), primarily involving data from the intensive care unit (n=15, 50%) of US-based institutions (n=19, 73%), in English (n=26, 87%). This focus aligned with the frequent reliance on the open-source Medical Information Mart for Intensive Care dataset (n=15, 50%). Summarization methodologies predominantly involved abstractive approaches (n=17, 57%) on single-document inputs (n=4, 13%) with unstructured data (n=13, 43%), yet reporting on methodological details remained inconsistent across studies. Model selection involved both open-source models (n=26, 87%) and proprietary models (n=7, 23%). Evaluation frameworks were highly heterogeneous. All studies conducted internal validation, but external validation (n=2, 7%), failure analysis (n=6, 20%), and patient safety risks analysis (n=1, 3%) were infrequent, and none reported bias assessment. Most studies used both automated metrics and human evaluation (n=16, 53%), while 10 (33%) used only automated metrics, and 4 (13%) only human evaluation. Key barriers hinder the translation of current research into trustworthy, clinically valid applications. Current research remains exploratory and limited in scope, with many applications yet to be explored. Performance assessments often lack reliability, and clinical impact evaluations are insufficient raising concerns about model utility, safety, fairness, and data privacy. Advancing the field requires more robust evaluation frameworks, a broader research scope, and a stronger focus on real-world applicability.

[Orthodontics in the CBCT era: 25 years later, what are the guidelines?].

Foucart JM, Papelard N, Bourriau J

pubmed logopapersMay 15 2025
CBCT has become an essential tool in orthodontics, although its use must remain judicious and evidence-based. This study provides an updated analysis of international recommendations concerning the use of CBCT in orthodontics, with a particular focus on clinical indications, radiation dose reduction, and recent technological advancements. A systematic review of guidelines published between 2015 and 2025 was conducted following the PRISMA methodology. Inclusion criteria comprised official directives from recognized scientific societies and clinical studies evaluating low dose protocols in orthodontics. The analysis of the 19 retained recommendations reveals a consensus regarding the primary indications for CBCT in orthodontics, particularly for impacted teeth, skeletal anomalies, periodontal and upper airways assessment. Dose optimization and the integration of artificial intelligence emerge as major advancements, enabling significant radiation reduction while preserving diagnostic accuracy. The development of low dose protocols and advanced reconstruction algorithms presents promising perspectives for safer and more efficient imaging, increasingly replacing conventional 2D radiographic techniques. However, an international harmonization of recommendations for these new imaging sequences is imperative to standardize clinical practices and enhance patient radioprotection.

Evaluating the reference accuracy of large language models in radiology: a comparative study across subspecialties.

Güneş YC, Cesur T, Çamur E

pubmed logopapersMay 12 2025
This study aimed to compare six large language models (LLMs) [Chat Generative Pre-trained Transformer (ChatGPT)o1-preview, ChatGPT-4o, ChatGPT-4o with canvas, Google Gemini 1.5 Pro, Claude 3.5 Sonnet, and Claude 3 Opus] in generating radiology references, assessing accuracy, fabrication, and bibliographic completeness. In this cross-sectional observational study, 120 open-ended questions were administered across eight radiology subspecialties (neuroradiology, abdominal, musculoskeletal, thoracic, pediatric, cardiac, head and neck, and interventional radiology), with 15 questions per subspecialty. Each question prompted the LLMs to provide responses containing four references with in-text citations and complete bibliographic details (authors, title, journal, publication year/month, volume, issue, page numbers, and PubMed Identifier). References were verified using Medline, Google Scholar, the Directory of Open Access Journals, and web searches. Each bibliographic element was scored for correctness, and a composite final score [(FS): 0-36] was calculated by summing the correct elements and multiplying this by a 5-point verification score for content relevance. The FS values were then categorized into a 5-point Likert scale reference accuracy score (RAS: 0 = fabricated; 4 = fully accurate). Non-parametric tests (Kruskal-Wallis, Tamhane's T2, Wilcoxon signed-rank test with Bonferroni correction) were used for statistical comparisons. Claude 3.5 Sonnet demonstrated the highest reference accuracy, with 80.8% fully accurate references (RAS 4) and a fabrication rate of 3.1%, significantly outperforming all other models (<i>P</i> < 0.001). Claude 3 Opus ranked second, achieving 59.6% fully accurate references and a fabrication rate of 18.3% (<i>P</i> < 0.001). ChatGPT-based models (ChatGPT-4o, ChatGPT-4o with canvas, and ChatGPT o1-preview) exhibited moderate accuracy, with fabrication rates ranging from 27.7% to 52.9% and <8% fully accurate references. Google Gemini 1.5 Pro had the lowest performance, achieving only 2.7% fully accurate references and the highest fabrication rate of 60.6% (<i>P</i> < 0.001). Reference accuracy also varied by subspecialty, with neuroradiology and cardiac radiology outperforming pediatric and head and neck radiology. Claude 3.5 Sonnet significantly outperformed all other models in generating verifiable radiology references, and Claude 3 Opus showed moderate performance. In contrast, ChatGPT models and Google Gemini 1.5 Pro delivered substantially lower accuracy with higher rates of fabricated references, highlighting current limitations in automated academic citation generation. The high accuracy of Claude 3.5 Sonnet can improve radiology literature reviews, research, and education with dependable references. The poor performance of other models, with high fabrication rates, risks misinformation in clinical and academic settings and highlights the need for refinement to ensure safe and effective use.

The present and future of lung cancer screening: latest evidence.

Gutiérrez Alliende J, Kazerooni EA, Crosbie PAJ, Xie X, Sharma A, Reis J

pubmed logopapersMay 9 2025
Lung cancer is the leading cause of cancer-related mortality worldwide. Early lung cancer detection improves lung cancer-related mortality and survival. This report summarizes presentations and panel discussions from a webinar, "The Present and Future of Lung Cancer Screening: Latest Evidence and AI Perspectives." The webinar provided the perspectives of experts from the United States, United Kingdom, and China on evidence-based recommendations and management in lung cancer screening (LCS), barriers, and the role of artificial intelligence (AI). With several countries now incorporating the utilization of AI in their screening programs, AI offers potential solutions to some of the challenges associated with LCS.

Artificial Intelligence in Vascular Neurology: Applications, Challenges, and a Review of AI Tools for Stroke Imaging, Clinical Decision Making, and Outcome Prediction Models.

Alqadi MM, Vidal SGM

pubmed logopapersMay 9 2025
Artificial intelligence (AI) promises to compress stroke treatment timelines, yet its clinical return on investment remains uncertain. We interrogate state‑of‑the‑art AI platforms across imaging, workflow orchestration, and outcome prediction to clarify value drivers and execution risks. Convolutional, recurrent, and transformer architectures now trigger large‑vessel‑occlusion alerts, delineate ischemic core in seconds, and forecast 90‑day function. Commercial deployments-RapidAI, Viz.ai, Aidoc-report double‑digit reductions in door‑to‑needle metrics and expanded thrombectomy eligibility. However, dataset bias, opaque reasoning, and limited external validation constrain scalability. Hybrid image‑plus‑clinical models elevate predictive accuracy but intensify data‑governance demands. AI can operationalize precision stroke care, but enterprise‑grade adoption requires federated data pipelines, explainable‑AI dashboards, and fit‑for‑purpose regulation. Prospective multicenter trials and continuous lifecycle surveillance are mandatory to convert algorithmic promise into reproducible, equitable patient benefit.

Medical machine learning operations: a framework to facilitate clinical AI development and deployment in radiology.

de Almeida JG, Messiou C, Withey SJ, Matos C, Koh DM, Papanikolaou N

pubmed logopapersMay 8 2025
The integration of machine-learning technologies into radiology practice has the potential to significantly enhance diagnostic workflows and patient care. However, the successful deployment and maintenance of medical machine-learning (MedML) systems in radiology requires robust operational frameworks. Medical machine-learning operations (MedMLOps) offer a structured approach ensuring persistent MedML reliability, safety, and clinical relevance. MedML systems are increasingly employed to analyse sensitive clinical and radiological data, which continuously changes due to advancements in data acquisition and model development. These systems can alleviate the workload of radiologists by streamlining diagnostic tasks, such as image interpretation and triage. MedMLOps ensures that such systems stay accurate and dependable by facilitating continuous performance monitoring, systematic validation, and simplified model maintenance-all critical to maintaining trust in machine-learning-driven diagnostics. Furthermore, MedMLOps aligns with established principles of patient data protection and regulatory compliance, including recent developments in the European Union, emphasising transparency, documentation, and safe model retraining. This enables radiologists to implement modern machine-learning tools with control and oversight at the forefront, ensuring reliable model performance within the dynamic context of clinical practice. MedMLOps empowers radiologists to deliver consistent, high-quality care with confidence, ensuring that MedML systems stay aligned with evolving medical standards and patient needs. MedMLOps can assist multiple stakeholders in radiology by ensuring models are available, continuously monitored and easy to use and maintain while preserving patient privacy. MedMLOps can better serve patients by facilitating the clinical implementation of cutting-edge MedML and clinicians by ensuring that MedML models are only utilised when they are performing as expected. KEY POINTS: Question MedML applications are becoming increasingly adopted in clinics, but the necessary infrastructure to sustain these applications is currently not well-defined. Findings Adapting machine learning operations concepts enhances MedML ecosystems by improving interoperability, automating monitoring/validation, and reducing deployment burdens on clinicians and medical informaticians. Clinical relevance Implementing these solutions eases the faster and safer adoption of advanced MedML models, ensuring consistent performance while reducing workload for clinicians, benefiting patient care through streamlined diagnostic workflows.

Artificial intelligence applied to ultrasound diagnosis of pelvic gynecological tumors: a systematic review and meta-analysis.

Geysels A, Garofalo G, Timmerman S, Barreñada L, De Moor B, Timmerman D, Froyman W, Van Calster B

pubmed logopapersMay 8 2025
To perform a systematic review on artificial intelligence (AI) studies focused on identifying and differentiating pelvic gynecological tumors on ultrasound scans. Studies developing or validating AI models for diagnosing gynecological pelvic tumors on ultrasound scans were eligible for inclusion. We systematically searched PubMed, Embase, Web of Science, and Cochrane Central from their database inception until April 30th, 2024. To assess the quality of the included studies, we adapted the QUADAS-2 risk of bias tool to address the unique challenges of AI in medical imaging. Using multi-level random effects models, we performed a meta-analysis to generate summary estimates of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. To provide a reference point of current diagnostic support tools for ultrasound examiners, we descriptively compared the pooled performance to that of the well-recognized ADNEX model on external validation. Subgroup analyses were performed to explore sources of heterogeneity. From 9151 records retrieved, 44 studies were eligible: 40 on ovarian, three on endometrial, and one on myometrial pathology. Overall, 95% were at high risk of bias - primarily due to inappropriate study inclusion criteria, the absence of a patient-level split of training and testing image sets, and no calibration assessment. For ovarian tumors, the summary AUC for AI models distinguishing benign from malignant tumors was 0.89 (95% CI: 0.85-0.92). In lower-risk studies (at least three low-risk domains), the summary AUC dropped to 0.87 (0.83-0.90), with deep learning models outperforming radiomics-based machine learning approaches in this subset. Only five studies included an external validation, and six evaluated calibration performance. In a recent systematic review of external validation studies, the ADNEX model had a pooled AUC of 0.93 (0.91-0.94) in studies at low risk of bias. Studies on endometrial and myometrial pathologies were reported individually. Although AI models show promising discriminative performances for diagnosing gynecological tumors on ultrasound, most studies have methodological shortcomings that result in a high risk of bias. In addition, the ADNEX model appears to outperform most AI approaches for ovarian tumors. Future research should emphasize robust study designs - ideally large, multicenter, and prospective cohorts that mirror real-world populations - along with external validation, proper calibration, and standardized reporting. This study was pre-registered with Open Science Framework (OSF): https://doi.org/10.17605/osf.io/bhkst.

Prompt Engineering for Large Language Models in Interventional Radiology.

Dietrich N, Bradbury NC, Loh C

pubmed logopapersMay 7 2025
Prompt engineering plays a crucial role in optimizing artificial intelligence (AI) and large language model (LLM) outputs by refining input structure, a key factor in medical applications where precision and reliability are paramount. This Clinical Perspective provides an overview of prompt engineering techniques and their relevance to interventional radiology (IR). It explores key strategies, including zero-shot, one- or few-shot, chain-of-thought, tree-of-thought, self-consistency, and directional stimulus prompting, demonstrating their application in IR-specific contexts. Practical examples illustrate how these techniques can be effectively structured for workplace and clinical use. Additionally, the article discusses best practices for designing effective prompts and addresses challenges in the clinical use of generative AI, including data privacy and regulatory concerns. It concludes with an outlook on the future of generative AI in IR, highlighting advances including retrieval-augmented generation, domain-specific LLMs, and multimodal models.
Page 1 of 19 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.