Sort by:
Page 1 of 19 results

An Annotated Multi-Site and Multi-Contrast Magnetic Resonance Imaging Dataset for the study of the Human Tongue Musculature.

Ribeiro FL, Zhu X, Ye X, Tu S, Ngo ST, Henderson RD, Steyn FJ, Kiernan MC, Barth M, Bollmann S, Shaw TB

pubmed logopapersMay 14 2025
This dataset provides the first annotated, openly available MRI-based imaging dataset for investigations of tongue musculature, including multi-contrast and multi-site MRI data from non-disease participants. The present dataset includes 47 participants collated from three studies: BeLong (four participants; T2-weighted images), EATT4MND (19 participants; T2-weighted images), and BMC (24 participants; T1-weighted images). We provide manually corrected segmentations of five key tongue muscles: the superior longitudinal, combined transverse/vertical, genioglossus, and inferior longitudinal muscles. Other phenotypic measures, including age, sex, weight, height, and tongue muscle volume, are also available for use. This dataset will benefit researchers across domains interested in the structure and function of the tongue in health and disease. For instance, researchers can use this data to train new machine learning models for tongue segmentation, which can be leveraged for segmentation and tracking of different tongue muscles engaged in speech formation in health and disease. Altogether, this dataset provides the means to the scientific community for investigation of the intricate tongue musculature and its role in physiological processes and speech production.

DEMAC-Net: A Dual-Encoder Multiattention Collaborative Network for Cervical Nerve Pathway and Adjacent Anatomical Structure Segmentation.

Cui H, Duan J, Lin L, Wu Q, Guo W, Zang Q, Zhou M, Fang W, Hu Y, Zou Z

pubmed logopapersMay 13 2025
Currently, cervical anesthesia is performed using three main approaches: superficial cervical plexus block, deep cervical plexus block, and intermediate plexus nerve block. However, each technique carries inherent risks and demands significant clinical expertise. Ultrasound imaging, known for its real-time visualization capabilities and accessibility, is widely used in both diagnostic and interventional procedures. Nevertheless, accurate segmentation of small and irregularly shaped structures such as the cervical and brachial plexuses remains challenging due to image noise, complex anatomical morphology, and limited annotated training data. This study introduces DEMAC-Net-a dual-encoder, multiattention collaborative network-to significantly improve the segmentation accuracy of these neural structures. By precisely identifying the cervical nerve pathway (CNP) and adjacent anatomical tissues, DEMAC-Net aims to assist clinicians, especially those less experienced, in effectively guiding anesthesia procedures and accurately identifying optimal needle insertion points. Consequently, this improvement is expected to enhance clinical safety, reduce procedural risks, and streamline decision-making efficiency during ultrasound-guided regional anesthesia. DEMAC-Net combines a dual-encoder architecture with the Spatial Understanding Convolution Kernel (SUCK) and the Spatial-Channel Attention Module (SCAM) to extract multi-scale features effectively. Additionally, a Global Attention Gate (GAG) and inter-layer fusion modules refine relevant features while suppressing noise. A novel dataset, Neck Ultrasound Dataset (NUSD), was introduced, containing 1,500 annotated ultrasound images across seven anatomical regions. Extensive experiments were conducted on both NUSD and the BUSI public dataset, comparing DEMAC-Net to state-of-the-art models using metrics such as Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). On the NUSD dataset, DEMAC-Net achieved a mean DSC of 93.3%, outperforming existing models. For external validation on the BUSI dataset, it demonstrated superior generalization, achieving a DSC of 87.2% and a mean IoU of 77.4%, surpassing other advanced methods. Notably, DEMAC-Net displayed consistent segmentation stability across all tested structures. The proposed DEMAC-Net significantly improves segmentation accuracy for small nerves and complex anatomical structures in ultrasound images, outperforming existing methods in terms of accuracy and computational efficiency. This framework holds great potential for enhancing ultrasound-guided procedures, such as peripheral nerve blocks, by providing more precise anatomical localization, ultimately improving clinical outcomes.

Blockchain enabled collective and combined deep learning framework for COVID19 diagnosis.

Periyasamy S, Kaliyaperumal P, Thirumalaisamy M, Balusamy B, Elumalai T, Meena V, Jadoun VK

pubmed logopapersMay 13 2025
The rapid spread of SARS-CoV-2 has highlighted the need for intelligent methodologies in COVID-19 diagnosis. Clinicians face significant challenges due to the virus's fast transmission rate and the lack of reliable diagnostic tools. Although artificial intelligence (AI) has improved image processing, conventional approaches still rely on centralized data storage and training. This reliance increases complexity and raises privacy concerns, which hinder global data exchange. Therefore, it is essential to develop collaborative models that balance accuracy with privacy protection. This research presents a novel framework that combines blockchain technology with a combined learning paradigm to ensure secure data distribution and reduced complexity. The proposed Combined Learning Collective Deep Learning Blockchain Model (CLCD-Block) aggregates data from multiple institutions and leverages a hybrid capsule learning network for accurate predictions. Extensive testing with lung CT images demonstrates that the model outperforms existing models, achieving an accuracy exceeding 97%. Specifically, on four benchmark datasets, CLCD-Block achieved up to 98.79% Precision, 98.84% Recall, 98.79% Specificity, 98.81% F1-Score, and 98.71% Accuracy, showcasing its superior diagnostic capability. Designed for COVID-19 diagnosis, the CLCD-Block framework is adaptable to other applications, integrating AI, decentralized training, privacy protection, and secure blockchain collaboration. It addresses challenges in diagnosing chronic diseases, facilitates cross-institutional research and monitors infectious outbreaks. Future work will focus on enhancing scalability, optimizing real-time performance and adapting the model for broader healthcare datasets.

Improving AI models for rare thyroid cancer subtype by text guided diffusion models.

Dai F, Yao S, Wang M, Zhu Y, Qiu X, Sun P, Qiu C, Yin J, Shen G, Sun J, Wang M, Wang Y, Yang Z, Sang J, Wang X, Sun F, Cai W, Zhang X, Lu H

pubmed logopapersMay 13 2025
Artificial intelligence applications in oncology imaging often struggle with diagnosing rare tumors. We identify significant gaps in detecting uncommon thyroid cancer types with ultrasound, where scarce data leads to frequent misdiagnosis. Traditional augmentation strategies do not capture the unique disease variations, hindering model training and performance. To overcome this, we propose a text-driven generative method that fuses clinical insights with image generation, producing synthetic samples that realistically reflect rare subtypes. In rigorous evaluations, our approach achieves substantial gains in diagnostic metrics, surpasses existing methods in authenticity and diversity measures, and generalizes effectively to other private and public datasets with various rare cancers. In this work, we demonstrate that text-guided image augmentation substantially enhances model accuracy and robustness for rare tumor detection, offering a promising avenue for more reliable and widespread clinical adoption.

Deep Learning-accelerated MRI in Body and Chest.

Rajamohan N, Bagga B, Bansal B, Ginocchio L, Gupta A, Chandarana H

pubmed logopapersMay 13 2025
Deep learning reconstruction (DLR) provides an elegant solution for MR acceleration while preserving image quality. This advancement is crucial for body imaging, which is frequently marred by the increased likelihood of motion-related artifacts. Multiple vendor-specific models focusing on T2, T1, and diffusion-weighted imaging have been developed for the abdomen, pelvis, and chest, with the liver and prostate being the most well-studied organ systems. Variational networks with supervised DL models, including data consistency layers and regularizers, are the most common DLR methods. The common theme for all single-center studies on this subject has been noninferior or superior image quality metrics and lesion conspicuity to conventional sequences despite significant acquisition time reduction. DLR also provides a potential for denoising, artifact reduction, increased resolution, and increased signal-noise ratio (SNR) and contrast-to-noise ratio (CNR) that can be balanced with acceleration benefits depending on the imaged organ system. Some specific challenges faced by DLR include slightly reduced lesion detection, cardiac motion-related signal loss, regional SNR variations, and variabilities in ADC measurements as reported in different organ systems. Continued investigations with large-scale multicenter prospective clinical validation of DLR to document generalizability and demonstrate noninferior diagnostic accuracy with histopathologic correlation are the need of the hour. The creation of vendor-neutral solutions, open data sharing, and diversifying training data sets are also critical to strengthening model robustness.

Automatic CTA analysis for blood vessels and aneurysm features extraction in EVAR planning.

Robbi E, Ravanelli D, Allievi S, Raunig I, Bonvini S, Passerini A, Trianni A

pubmed logopapersMay 12 2025
Endovascular Aneurysm Repair (EVAR) is a minimally invasive procedure crucial for treating abdominal aortic aneurysms (AAA), where precise pre-operative planning is essential. Current clinical methods rely on manual measurements, which are time-consuming and prone to errors. Although AI solutions are increasingly being developed to automate aspects of these processes, most existing approaches primarily focus on computing volumes and diameters, falling short of delivering a fully automated pre-operative analysis. This work presents BRAVE (Blood Vessels Recognition and Aneurysms Visualization Enhancement), the first comprehensive AI-driven solution for vascular segmentation and AAA analysis using pre-operative CTA scans. BRAVE offers exhaustive segmentation, identifying both the primary abdominal aorta and secondary vessels, often overlooked by existing methods, providing a complete view of the vascular structure. The pipeline performs advanced volumetric analysis of the aneurysm sac, quantifying thrombotic tissue and calcifications, and automatically identifies the proximal and distal sealing zones, critical for successful EVAR procedures. BRAVE enables fully automated processing, reducing manual intervention and improving clinical workflow efficiency. Trained on a multi-center open-access dataset, it demonstrates generalizability across different CTA protocols and patient populations, ensuring robustness in diverse clinical settings. This solution saves time, ensures precision, and standardizes the process, enhancing vascular surgeons' decision-making.

The March to Harmonized Imaging Standards for Retinal Imaging.

Gim N, Ferguson AN, Blazes M, Lee CS, Lee AY

pubmed logopapersMay 11 2025
The adoption of standardized imaging protocols in retinal imaging is critical to overcoming challenges posed by fragmented data formats across devices and manufacturers. The lack of standardization hinders clinical interoperability, collaborative research, and the development of artificial intelligence (AI) models that depend on large, high-quality datasets. The Digital Imaging and Communication in Medicine (DICOM) standard offers a robust solution for ensuring interoperability in medical imaging. Although DICOM is widely utilized in radiology and cardiology, its adoption in ophthalmology remains limited. Retinal imaging modalities such as optical coherence tomography (OCT), fundus photography, and OCT angiography (OCTA) have revolutionized retinal disease management but are constrained by proprietary and non-standardized formats. This review underscores the necessity for harmonized imaging standards in ophthalmology, detailing DICOM standards for retinal imaging including ophthalmic photography (OP), OCT, and OCTA, and their requisite metadata information. Additionally, the potential of DICOM standardization for advancing AI applications in ophthalmology is explored. A notable example is the Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI) dataset, the first publicly available standards-compliant DICOM retinal imaging dataset. This dataset encompasses diverse retinal imaging modalities, including color fundus photography, infrared, autofluorescence, OCT, and OCTA. By leveraging multimodal retinal imaging, AI-READI provides a transformative resource for studying diabetes and its complications, setting a blueprint for future datasets aimed at harmonizing imaging formats and enabling AI-driven breakthroughs in ophthalmology. Our manuscript also addresses challenges in retinal imaging for diabetic patients, retinal imaging-based AI applications for studying diabetes, and potential advancements in retinal imaging standardization.

KEVS: enhancing segmentation of visceral adipose tissue in pre-cystectomy CT with Gaussian kernel density estimation.

Boucher T, Tetlow N, Fung A, Dewar A, Arina P, Kerneis S, Whittle J, Mazomenos EB

pubmed logopapersMay 9 2025
The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of postoperative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations. We introduce the kernel density-enhanced VAT segmentator (KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks. We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>4.80</mn> <mo>%</mo></mrow> </math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>6.02</mn> <mo>%</mo></mrow> </math> improvement in Dice coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst. This research introduces KEVS, an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.

Chest X-Ray Visual Saliency Modeling: Eye-Tracking Dataset and Saliency Prediction Model.

Lou J, Wang H, Wu X, Ng JCH, White R, Thakoor KA, Corcoran P, Chen Y, Liu H

pubmed logopapersMay 8 2025
Radiologists' eye movements during medical image interpretation reflect their perceptual-cognitive processes of diagnostic decisions. The eye movement data can be modeled to represent clinically relevant regions in a medical image and potentially integrated into an artificial intelligence (AI) system for automatic diagnosis in medical imaging. In this article, we first conduct a large-scale eye-tracking study involving 13 radiologists interpreting 191 chest X-ray (CXR) images, establishing a best-of-its-kind CXR visual saliency benchmark. We then perform analysis to quantify the reliability and clinical relevance of saliency maps (SMs) generated for CXR images. We develop CXR image saliency prediction method (CXRSalNet), a novel saliency prediction model that leverages radiologists' gaze information to optimize the use of unlabeled CXR images, enhancing training and mitigating data scarcity. We also demonstrate the application of our CXR saliency model in enhancing the performance of AI-powered diagnostic imaging systems.
Page 1 of 19 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.