Sort by:
Page 1 of 11102 results
Next

A software ecosystem for brain tractometry processing, analysis, and insight.

Kruper J, Richie-Halford A, Qiao J, Gilmore A, Chang K, Grotheer M, Roy E, Caffarra S, Gomez T, Chou S, Cieslak M, Koudoro S, Garyfallidis E, Satthertwaite TD, Yeatman JD, Rokem A

pubmed logopapersAug 14 2025
Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) to assess physical properties of brain connections. Here, we present an integrative ecosystem of software that performs all steps of tractometry: post-processing of dMRI data, delineation of major white matter pathways, and modeling of the tissue properties within them. This ecosystem also provides a set of interoperable and extensible tools for visualization and interpretation of the results that extract insights from these measurements. These include novel machine learning and statistical analysis methods adapted to the characteristic structure of tract-based data. We benchmark the performance of these statistical analysis methods in different datasets and analysis tasks, including hypothesis testing on group differences and predictive analysis of subject age. We also demonstrate that computational advances implemented in the software offer orders of magnitude of acceleration. Taken together, these open-source software tools-freely available at https://tractometry.org-provide a transformative environment for the analysis of dMRI data.

MammosighTR: Nationwide Breast Cancer Screening Mammogram Dataset with BI-RADS Annotations for Artificial Intelligence Applications.

Koç U, Beşler MS, Sezer EA, Karakaş E, Özkaya YA, Evrimler Ş, Yalçın A, Kızıloğlu A, Kesimal U, Oruç M, Çankaya İ, Koç Keleş D, Merd N, Özkan E, Çevik Nİ, Gökhan MB, Boyraz Hayat B, Özer M, Tokur O, Işık F, Tezcan A, Battal F, Yüzkat M, Sebik NB, Karademir F, Topuz Y, Sezer Ö, Varlı S, Ülgü MM, Akdoğan E, Birinci Ş

pubmed logopapersAug 13 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content</i>. The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.

The REgistry of Flow and Perfusion Imaging for Artificial INtelligEnce with PET(REFINE PET): Rationale and Design.

Ramirez G, Lemley M, Shanbhag A, Kwiecinski J, Miller RJH, Kavanagh PB, Liang JX, Dey D, Slipczuk L, Travin MI, Alexanderson E, Carvajal-Juarez I, Packard RRS, Al-Mallah M, Einstein AJ, Feher A, Acampa W, Knight S, Le VT, Mason S, Sanghani R, Wopperer S, Chareonthaitawee P, Buechel RR, Rosamond TL, deKemp RA, Berman DS, Di Carli MF, Slomka PJ

pubmed logopapersAug 5 2025
The REgistry of Flow and Perfusion Imaging for Artificial Intelligence with PET (REFINE PET) was established to collect multicenter PET and associated computed tomography (CT) images, together with clinical data and outcomes, into a comprehensive research resource. REFINE PET will enable validation and development of both standard and novel cardiac PET/CT processing methods. REFINE PET is a multicenter, international registry that contains both clinical and imaging data. The PET scans were processed using QPET software (Cedars-Sinai Medical Center, Los Angeles, CA), while the CT scans were processed using deep learning (DL) to detect coronary artery calcium (CAC). Patients were followed up for the occurrence of major adverse cardiovascular events (MACE), which include death, myocardial infarction, unstable angina, and late revascularization (>90 days from PET). The REFINE PET registry currently contains data for 35,588 patients from 14 sites, with additional patient data and sites anticipated. Comprehensive clinical data (including demographics, medical history, and stress test results) were integrated with more than 2200 imaging variables across 42 categories. The registry is poised to address a broad range of clinical questions, supported by correlating invasive angiography (within 6 months of MPI) in 5972 patients and a total of 9252 major adverse cardiovascular events during a median follow-up of 4.2 years. The REFINE PET registry leverages the integration of clinical, multimodality imaging, and novel quantitative and AI tools to advance the role of PET/CT MPI in diagnosis and risk stratification.

An integrated predictive model for Alzheimer's disease progression from cognitively normal subjects using generated MRI and interpretable AI.

Aghaei A, Moghaddam ME

pubmed logopapersAug 4 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that begins with subtle cognitive changes and advances to severe impairment. Early diagnosis is crucial for effective intervention and management. In this study, we propose an integrated framework that leverages ensemble transfer learning, generative modeling, and automatic ROI extraction techniques to predict the progression of Alzheimer's disease from cognitively normal (CN) subjects. Using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, we employ a three-stage process: (1) estimating the probability of transitioning from CN to mild cognitive impairment (MCI) using ensemble transfer learning, (2) generating future MRI images using Transformer-based Generative Adversarial Network (ViT-GANs) to simulate disease progression after two years, and (3) predicting AD using a 3D convolutional neural network (CNN) with calibrated probabilities using isotonic regression and interpreting critical regions of interest (ROIs) with Gradient-weighted Class Activation Mapping (Grad-CAM). However, the proposed method has generality and may work when sufficient data for simulating brain changes after three years or more is available; in the training phase, regarding available data, brain changes after 2 years have been considered. Our approach addresses the challenge of limited longitudinal data by creating high-quality synthetic images and improving model transparency by identifying key brain regions involved in disease progression. The proposed method demonstrates high accuracy and F1-score, 0.85 and 0.86, respectively, in CN to AD prediction up to 10 years, offering a potential tool for early diagnosis and personalized intervention strategies in Alzheimer's disease.

Open-radiomics: a collection of standardized datasets and a technical protocol for reproducible radiomics machine learning pipelines.

Namdar K, Wagner MW, Ertl-Wagner BB, Khalvati F

pubmed logopapersAug 4 2025
As an important branch of machine learning pipelines in medical imaging, radiomics faces two major challenges namely reproducibility and accessibility. In this work, we introduce open-radiomics, a set of radiomics datasets along with a comprehensive radiomics pipeline based on our proposed technical protocol to investigate the effects of radiomics feature extraction on the reproducibility of the results. We curated large-scale radiomics datasets based on three open-source datasets; BraTS 2020 for high-grade glioma (HGG) versus low-grade glioma (LGG) classification and survival analysis, BraTS 2023 for O6-methylguanine-DNA methyltransferase (MGMT) classification, and non-small cell lung cancer (NSCLC) survival analysis from the Cancer Imaging Archive (TCIA). We used the BraTS 2020 open-source Magnetic Resonance Imaging (MRI) dataset to demonstrate how our proposed technical protocol could be utilized in radiomics-based studies. The cohort includes 369 adult patients with brain tumors (76 LGG, and 293 HGG). Using PyRadiomics library for LGG vs. HGG classification, we created 288 radiomics datasets; the combinations of 4 MRI sequences, 3 binWidths, 6 image normalization methods, and 4 tumor subregions. We used Random Forest classifiers, and for each radiomics dataset, we repeated the training-validation-test (60%/20%/20%) experiment with different data splits and model random states 100 times (28,800 test results) and calculated the Area Under the Receiver Operating Characteristic Curve (AUROC). Unlike binWidth and image normalization, the tumor subregion and imaging sequence significantly affected performance of the models. T1 contrast-enhanced sequence and the union of Necrotic and the non-enhancing tumor core subregions resulted in the highest AUROCs (average test AUROC 0.951, 95% confidence interval of (0.949, 0.952)). Although several settings and data splits (28 out of 28800) yielded test AUROC of 1, they were irreproducible. Our experiments demonstrate the sources of variability in radiomics pipelines (e.g., tumor subregion) can have a significant impact on the results, which may lead to superficial perfect performances that are irreproducible. Not applicable.

Evaluating acute image ordering for real-world patient cases via language model alignment with radiological guidelines.

Yao MS, Chae A, Saraiya P, Kahn CE, Witschey WR, Gee JC, Sagreiya H, Bastani O

pubmed logopapersAug 4 2025
Diagnostic imaging studies are increasingly important in the management of acutely presenting patients. However, ordering appropriate imaging studies in the emergency department is a challenging task with a high degree of variability among healthcare providers. To address this issue, recent work has investigated whether generative AI and large language models can be leveraged to recommend diagnostic imaging studies in accordance with evidence-based medical guidelines. However, it remains challenging to ensure that these tools can provide recommendations that correctly align with medical guidelines, especially given the limited diagnostic information available in acute care settings. In this study, we introduce a framework to intelligently leverage language models by recommending imaging studies for patient cases that align with the American College of Radiology's Appropriateness Criteria, a set of evidence-based guidelines. To power our experiments, we introduce RadCases, a dataset of over 1500 annotated case summaries reflecting common patient presentations, and apply our framework to enable state-of-the-art language models to reason about appropriate imaging choices. Using our framework, state-of-the-art language models achieve accuracy comparable to clinicians in ordering imaging studies. Furthermore, we demonstrate that our language model-based pipeline can be used as an intelligent assistant by clinicians to support image ordering workflows and improve the accuracy of acute image ordering according to the American College of Radiology's Appropriateness Criteria. Our work demonstrates and validates a strategy to leverage AI-based software to improve trustworthy clinical decision-making in alignment with expert evidence-based guidelines.

Multimodal data curation via interoperability: use cases with the Medical Imaging and Data Resource Center.

Chen W, Whitney HM, Kahaki S, Meyer C, Li H, Sá RC, Lauderdale D, Napel S, Gersing K, Grossman RL, Giger ML

pubmed logopapersAug 1 2025
Interoperability (the ability of data or tools from non-cooperating resources to integrate or work together with minimal effort) is particularly important for curation of multimodal datasets from multiple data sources. The Medical Imaging and Data Resource Center (MIDRC), a multi-institutional collaborative initiative to collect, curate, and share medical imaging datasets, has made interoperability with other data commons one of its top priorities. The purpose of this study was to demonstrate the interoperability between MIDRC and two other data repositories, BioData Catalyst (BDC) and National Clinical Cohort Collaborative (N3C). Using interoperability capabilities of the data repositories, we built two cohorts for example use cases, with each containing clinical and imaging data on matched patients. The representativeness of the cohorts is characterized by comparing with CDC population statistics using the Jensen-Shannon distance. The process and methods of interoperability demonstrated in this work can be utilized by MIDRC, BDC, and N3C users to create multimodal datasets for development of artificial intelligence/machine learning models.

SAM-Med3D: A Vision Foundation Model for General-Purpose Segmentation on Volumetric Medical Images.

Wang H, Guo S, Ye J, Deng Z, Cheng J, Li T, Chen J, Su Y, Huang Z, Shen Y, zzzzFu B, Zhang S, He J

pubmed logopapersJul 31 2025
Existing volumetric medical image segmentation models are typically task-specific, excelling at specific targets but struggling to generalize across anatomical structures or modalities. This limitation restricts their broader clinical use. In this article, we introduce segment anything model (SAM)-Med3D, a vision foundation model (VFM) for general-purpose segmentation on volumetric medical images. Given only a few 3-D prompt points, SAM-Med3D can accurately segment diverse anatomical structures and lesions across various modalities. To achieve this, we gather and preprocess a large-scale 3-D medical image segmentation dataset, SA-Med3D-140K, from 70 public datasets and 8K licensed private cases from hospitals. This dataset includes 22K 3-D images and 143K corresponding masks. SAM-Med3D, a promptable segmentation model characterized by its fully learnable 3-D structure, is trained on this dataset using a two-stage procedure and exhibits impressive performance on both seen and unseen segmentation targets. We comprehensively evaluate SAM-Med3D on 16 datasets covering diverse medical scenarios, including different anatomical structures, modalities, targets, and zero-shot transferability to new/unseen tasks. The evaluation demonstrates the efficiency and efficacy of SAM-Med3D, as well as its promising application to diverse downstream tasks as a pretrained model. Our approach illustrates that substantial medical resources can be harnessed to develop a general-purpose medical AI for various potential applications. Our dataset, code, and models are available at: https://github.com/uni-medical/SAM-Med3D.

High-Resolution Ultrasound Data for AI-Based Segmentation in Mouse Brain Tumor.

Dorosti S, Landry T, Brewer K, Forbes A, Davis C, Brown J

pubmed logopapersJul 30 2025
Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, making effective treatments essential to improve patient survival. To advance the understanding of GBM and develop more effective therapies, preclinical studies commonly use mouse models due to their genetic and physiological similarities to humans. In particular, the GL261 mouse glioma model is employed for its reproducible tumor growth and ability to mimic key aspects of human gliomas. Ultrasound imaging is a valuable modality in preclinical studies, offering real-time, non-invasive tumor monitoring and facilitating treatment response assessment. Furthermore, its potential therapeutic applications, such as in tumor ablation, expand its utility in preclinical studies. However, real-time segmentation of GL261 tumors during surgery introduces significant complexities, such as precise tumor boundary delineation and maintaining processing efficiency. Automated segmentation offers a solution, but its success relies on high-quality datasets with precise labeling. Our study introduces the first publicly available ultrasound dataset specifically developed to improve tumor segmentation in GL261 glioblastomas, providing 1,856 annotated images to support AI model development in preclinical research. This dataset bridges preclinical insights and clinical practice, laying the foundation for developing more accurate and effective tumor resection techniques.

Efficacy of image similarity as a metric for augmenting small dataset retinal image segmentation.

Wallace T, Heng IS, Subasic S, Messenger C

pubmed logopapersJul 30 2025
Synthetic images are an option for augmenting limited medical imaging datasets to improve the performance of various machine learning models. A common metric for evaluating synthetic image quality is the Fréchet Inception Distance (FID) which measures the similarity of two image datasets. In this study we evaluate the relationship between this metric and the improvement which synthetic images, generated by a Progressively Growing Generative Adversarial Network (PGGAN), grant when augmenting Diabetes-related Macular Edema (DME) intraretinal fluid segmentation performed by a U-Net model with limited amounts of training data. We find that the behaviour of augmenting with standard and synthetic images agrees with previously conducted experiments. Additionally, we show that dissimilar (high FID) datasets do not improve segmentation significantly. As FID between the training and augmenting datasets decreases, the augmentation datasets are shown to contribute to significant and robust improvements in image segmentation. Finally, we find that there is significant evidence to suggest that synthetic and standard augmentations follow separate log-normal trends between FID and improvements in model performance, with synthetic data proving more effective than standard augmentation techniques. Our findings show that more similar datasets (lower FID) will be more effective at improving U-Net performance, however, the results also suggest that this improvement may only occur when images are sufficiently dissimilar.
Page 1 of 11102 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.