Sort by:
Page 1 of 48471 results
Next

Recent technological advances in video capsule endoscopy: a comprehensive review.

Kim M, Jang HJ

pubmed logopapersSep 29 2025
Video capsule endoscopy (VCE) originally revolutionized gastrointestinal imaging by providing a noninvasive method for evaluating small bowel diseases. Recent technological innovations, including enhanced imaging systems, artificial intelligence (AI), and improved localization, have significantly improved VCE's diagnostic accuracy, efficiency, and clinical utility. This review aims to summarize and evaluate recent technological advances in VCE, focusing on system comparisons, image enhancement, localization technologies, and AI-assisted lesion detection.

Global mapping of artificial intelligence applications in breast cancer from 1988-2024: a machine learning approach.

Nguyen THT, Jeon S, Yoon J, Park B

pubmed logopapersSep 29 2025
Artificial intelligence (AI) has become increasingly integral to various aspects of breast cancer care, including screening, diagnosis, and treatment. This study aimed to critically examine the application of AI throughout the breast cancer care continuum to elucidate key research developments, emerging trends, and prevalent patterns. English articles and reviews published between 1988 and 2024 were retrieved from the Web of Science database, focusing on studies that applied AI in breast cancer research. Collaboration among countries was analyzed using co-authorship networks and co-occurrence mapping. Additionally, clustering analysis using Latent Dirichlet Allocation (LDA) was conducted for topic modeling, whereas linear regression was employed to assess trends in research outputs over time. A total of 8,711 publications were included in the analysis. The United States has led the research in applying AI to the breast cancer care continuum, followed by China and India. Recent publications have increasingly focused on the utilization of deep learning and machine learning (ML) algorithms for automated breast cancer detection in mammography and histopathology. Moreover, the integration of multi-omics data and molecular profiling with AI has emerged as a significant trend. However, research on the applications of robotic and ML technologies in surgical oncology and postoperative care remains limited. Overall, the volume of research addressing AI for early detection, diagnosis, and classification of breast cancer has markedly increased over the past five years. The rapid expansion of AI-related research on breast cancer underscores its potential impact. However, significant challenges remain. Ongoing rigorous investigations are essential to ensure that AI technologies yield evidence-based benefits across diverse patient populations, thereby avoiding the inadvertent exacerbation of existing healthcare disparities.

[Advances in the application of multimodal image fusion technique in stomatology].

Ma TY, Zhu N, Zhang Y

pubmed logopapersSep 26 2025
Within the treatment process of modern stomatology, obtaining exquisite preoperative information is the key to accurate intraoperative planning with implementation and prognostic judgment. However, traditional single mode image has obvious shortcomings, such as "monotonous contents" and "unstable measurement accuracy", which could hardly meet the diversified needs of oral patients. Multimodal medical image fusion (MMIF) technique has been introduced into the studies of stomatology in the 1990s, aiming at realizing personalized patients' data analysis through multiple fusion algorithms, which combines the advantages of multimodal medical images while laying a stable foundation for new treatment technologies. Recently artificial intelligence (AI) has significantly increased the precision and efficiency of MMIF's registration: advanced algorithms and networks have confirmed the great compatibility between AI and MMIF. This article systematically reviews the development history of the multimodal image fusion technique and its current application in stomatology, while analyzing technological progresses within the domain combined with the background of AI's rapid development, in order to provide new ideas for achieving new advancements within the field of stomatology.

Theranostics in nuclear medicine: the era of precision oncology.

Gandhi N, Alaseem AM, Deshmukh R, Patel A, Alsaidan OA, Fareed M, Alasiri G, Patel S, Prajapati B

pubmed logopapersSep 26 2025
Theranostics represents a transformative advancement in nuclear medicine by integrating molecular imaging and targeted radionuclide therapy within the paradigm of personalized oncology. This review elucidates the historical evolution and contemporary clinical applications of theranostics, emphasizing its pivotal role in precision cancer management. The theranostic approach involves the coupling of diagnostic and therapeutic radionuclides that target identical molecular biomarkers, enabling simultaneous visualization and treatment of malignancies such as neuroendocrine tumors (NETs), prostate cancer, and differentiated thyroid carcinoma. Key theranostic radiopharmaceutical pairs, including Gallium-68-labeled DOTA-Tyr3-octreotate (Ga-68-DOTATATE) with Lutetium-177-labeled DOTA-Tyr3-octreotate (Lu-177-DOTATATE), and Gallium-68-labeled Prostate-Specific Membrane Antigen (Ga-68-PSMA) with Lutetium-177-labeled Prostate-Specific Membrane Antigen (Lu-177-PSMA), exemplify the "see-and-treat" principle central to this modality. This article further explores critical molecular targets such as somatostatin receptor subtype 2, prostate-specific membrane antigen, human epidermal growth factor receptor 2, CD20, and C-X-C chemokine receptor type 4, along with design principles for radiopharmaceuticals that optimize target specificity while minimizing off-target toxicity. Advances in imaging platforms, including positron emission tomography/computed tomography (PET/CT), single-photon emission computed tomography/CT (SPECT/CT), and hybrid positron emission tomography/magnetic resonance imaging (PET/MRI), have been instrumental in accurate dosimetry, therapeutic response assessment, and adaptive treatment planning. Integration of artificial intelligence (AI) and radiomics holds promise for enhanced image segmentation, predictive modeling, and individualized dosimetric planning. The review also addresses regulatory, manufacturing, and economic considerations, including guidelines from the United States Food and Drug Administration (USFDA) and European Medicines Agency (EMA), Good Manufacturing Practice (GMP) standards, and reimbursement frameworks, which collectively influence global adoption of theranostics. In summary, theranostics is poised to become a cornerstone of next-generation oncology, catalyzing a paradigm shift toward biologically driven, real-time personalized cancer care that seamlessly links diagnosis and therapy.

Ultra-low-field MRI: a David versus Goliath challenge in modern imaging.

Gagliardo C, Feraco P, Contrino E, D'Angelo C, Geraci L, Salvaggio G, Gagliardo A, La Grutta L, Midiri M, Marrale M

pubmed logopapersSep 26 2025
Ultra-low-field magnetic resonance imaging (ULF-MRI), operating below 0.2 Tesla, is gaining renewed interest as a re-emerging diagnostic modality in a field dominated by high- and ultra-high-field systems. Recent advances in magnet design, RF coils, pulse sequences, and AI-based reconstruction have significantly enhanced image quality, mitigating traditional limitations such as low signal- and contrast-to-noise ratio and reduced spatial resolution. ULF-MRI offers distinct advantages: reduced susceptibility artifacts, safer imaging in patients with metallic implants, low power consumption, and true portability for point-of-care use. This narrative review synthesizes the physical foundations, technological advances, and emerging clinical applications of ULF-MRI. A focused literature search across PubMed, Scopus, IEEE Xplore, and Google Scholar was conducted up to August 11, 2025, using combined keywords targeting hardware, software, and clinical domains. Inclusion emphasized scientific rigor and thematic relevance. A comparative analysis with other imaging modalities highlights the specific niche ULF-MRI occupies within the broader diagnostic landscape. Future directions and challenges for clinical translation are explored. In a world increasingly polarized between the push for ultra-high-field excellence and the need for accessible imaging, ULF-MRI embodies a modern "David versus Goliath" theme, offering a sustainable, democratizing force capable of expanding MRI access to anyone, anywhere.

Evaluating the Accuracy and Efficiency of AI-Generated Radiology Reports Based on Positive Findings-A Qualitative Assessment of AI in Radiology.

Rajmohamed RF, Chapala S, Shazahan MA, Wali P, Botchu R

pubmed logopapersSep 26 2025
With increasing imaging demands, radiologists face growing workload pressures, often resulting in delays and reduced diagnostic efficiency. Recent advances in artificial intelligence (AI) have introduced tools for automated report generation, particularly in simpler imaging modalities, such as X-rays. However, limited research has assessed AI performance in complex studies such as MRI and CT scans, where report accuracy and clinical interpretation are critical. To evaluate the performance of a semi-automated AI-based reporting platform in generating radiology reports for complex imaging studies, and to compare its accuracy, efficiency, and user confidence with the traditional dictation method. This study involved 100 imaging cases, including MRI knee (n=21), MRI lumbar spine (n=30), CT head (n=23), and CT Abdomen and Pelvis (n=26). Consultant musculoskeletal radiologists reported each case using both traditional dictation and the AI platform. The radiologist first identified and entered the key positive findings, based on which the AI system generated a full draft report. Reporting time was recorded, and both methods were evaluated on accuracy, user confidence, and overall reporting experience (rated on a scale of 1-5). Statistical analysis was conducted using two-tailed t-tests and 95% confidence intervals. AI-generated reports demonstrated significantly improved performance across all parameters. The mean reporting time reduced from 6.1 to 3.43 min (p<0.0001) with AI-assisted report generation. Accuracy improved from 3.81 to 4.65 (p<0.0001), confidence ratings increased from 3.91 to 4.67 (p<0.0001), and overall reporting experience favored using the AI platform for generating radiology reports (mean 4.7 vs. 3.69, p<0.0001). Minor formatting errors and occasional anatomical misinterpretations were observed in AI-generated reports, but could be easily corrected by the radiologist during review. The AI-assisted reporting platform significantly improved efficiency and radiologist confidence without compromising accuracy. Although the tool performs well when provided with key clinical findings, it still requires expert oversight, especially in anatomically complex reporting. These findings support the use of AI as a supportive tool in radiology practice, with a focus on data integrity, consistency, and human validation.

NextGen lung disease diagnosis with explainable artificial intelligence.

Veeramani N, S A RS, S SP, S S, Jayaraman P

pubmed logopapersSep 26 2025
The COVID-19 pandemic has been the most catastrophic global health emergency of the [Formula: see text] century, resulting in hundreds of millions of reported cases and five million deaths. Chest X-ray (CXR) images are highly valuable for early detection of lung diseases in monitoring and investigating pulmonary disorders such as COVID-19, pneumonia, and tuberculosis. These CXR images offer crucial features about the lung's health condition and can assist in making accurate diagnoses. Manual interpretation of CXR images is challenging even for expert radiologists due to the overlapping radiological features. Therefore, Artificial Intelligence (AI) based image processing took over the charge in healthcare. But still it is uncertain to trust the prediction results by an AI model. However, this can be resolved by implementing explainable artificial intelligence (XAI) tools that transform a black-box AI into a glass-box model. In this research article, we have proposed a novel XAI-TRANS model with inception based transfer learning addressing the challenge of overlapping features in multiclass classification of CXR images. Also, we proposed an improved U-Net Lung segmentation dedicated to obtaining the radiological features for classification. The proposed approach achieved a maximum precision of 98% and accuracy of 97% in multiclass lung disease classification. By leveraging XAI techniques with the evident improvement of 4.75%, specifically LIME and Grad-CAM, to provide detailed and accurate explanations for the model's prediction.

MedIENet: medical image enhancement network based on conditional latent diffusion model.

Yuan W, Feng Y, Wen T, Luo G, Liang J, Sun Q, Liang S

pubmed logopapersSep 26 2025
Deep learning necessitates a substantial amount of data, yet obtaining sufficient medical images is difficult due to concerns about patient privacy and high collection costs. To address this issue, we propose a conditional latent diffusion model-based medical image enhancement network, referred to as the Medical Image Enhancement Network (MedIENet). To meet the rigorous standards required for image generation in the medical imaging field, a multi-attention module is incorporated in the encoder of the denoising U-Net backbone. Additionally Rotary Position Embedding (RoPE) is integrated into the self-attention module to effectively capture positional information, while cross-attention is utilised to embed integrate class information into the diffusion process. MedIENet is evaluated on three datasets: Chest CT-Scan images, Chest X-Ray Images (Pneumonia), and Tongue dataset. Compared to existing methods, MedIENet demonstrates superior performance in both fidelity and diversity of the generated images. Experimental results indicate that for downstream classification tasks using ResNet50, the Area Under the Receiver Operating Characteristic curve (AUROC) achieved with real data alone is 0.76 for the Chest CT-Scan images dataset, 0.87 for the Chest X-Ray Images (Pneumonia) dataset, and 0.78 for the Tongue Dataset. When using mixed data consisting of real data and generated data, the AUROC improves to 0.82, 0.94, and 0.82, respectively, reflecting increases of approximately 6%, 7%, and 4%. These findings indicate that the images generated by MedIENet can enhance the performance of downstream classification tasks, providing an effective solution to the scarcity of medical image training data.

Model-driven individualized transcranial direct current stimulation for the treatment of insomnia disorder: protocol for a randomized, sham-controlled, double-blind study.

Wang Y, Jia W, Zhang Z, Bai T, Xu Q, Jiang J, Wang Z

pubmed logopapersSep 26 2025
Insomnia disorder is a prevalent condition associated with significant negative impacts on health and daily functioning. Transcranial direct current stimulation (tDCS) has emerged as a potential technique for improving sleep. However, questions remain regarding its clinical efficacy, and there is a lack of standardized individualized stimulation protocols. This study aims to evaluate the efficacy of model-driven, individualized tDCS for treating insomnia disorder through a randomized, double-blind, sham-controlled trial. A total of 40 patients diagnosed with insomnia disorder will be recruited and randomly assigned to either an active tDCS group or a sham stimulation group. Individualized stimulation parameters will be determined through machine learning-based electric field modeling incorporating structural MRI and EEG data. Participants will undergo 10 sessions of tDCS (5 days/week for 2 consecutive weeks), with follow-up assessments conducted at 2 and 4 weeks after treatment. The primary outcome is the reduction in the Insomnia Severity Index (ISI) score at two weeks post-treatment. Secondary outcomes include changes in sleep parameters, anxiety, and depression scores. This study is expected to provide evidence for the effectiveness of individualized tDCS in improving sleep quality and reducing insomnia symptoms. This integrative approach, combining advanced neuroimaging and electrophysiological biomarkers, has the potential to establish an evidence-based framework for individualized brain stimulation, optimizing therapeutic outcomes. This study is registered at ClinicalTrials.gov (Identifier: NCT06671457) and was registered on 4 November 2024. The online version contains supplementary material available at 10.1186/s12888-025-07347-5.

The Evolution and Clinical Impact of Deep Learning Technologies in Breast MRI.

Fujioka T, Fujita S, Ueda D, Ito R, Kawamura M, Fushimi Y, Tsuboyama T, Yanagawa M, Yamada A, Tatsugami F, Kamagata K, Nozaki T, Matsui Y, Fujima N, Hirata K, Nakaura T, Tateishi U, Naganawa S

pubmed logopapersSep 26 2025
The integration of deep learning (DL) in breast MRI has revolutionized the field of medical imaging, notably enhancing diagnostic accuracy and efficiency. This review discusses the substantial influence of DL technologies across various facets of breast MRI, including image reconstruction, classification, object detection, segmentation, and prediction of clinical outcomes such as response to neoadjuvant chemotherapy and recurrence of breast cancer. Utilizing sophisticated models such as convolutional neural networks, recurrent neural networks, and generative adversarial networks, DL has improved image quality and precision, enabling more accurate differentiation between benign and malignant lesions and providing deeper insights into disease behavior and treatment responses. DL's predictive capabilities for patient-specific outcomes also suggest potential for more personalized treatment strategies. The advancements in DL are pioneering a new era in breast cancer diagnostics, promising more personalized and effective healthcare solutions. Nonetheless, the integration of this technology into clinical practice faces challenges, necessitating further research, validation, and development of legal and ethical frameworks to fully leverage its potential.
Page 1 of 48471 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.