Sort by:
Page 1 of 13129 results
Next

Artificial intelligence in medical imaging diagnosis: are we ready for its clinical implementation?

Ramos-Soto O, Aranguren I, Carrillo M M, Oliva D, Balderas-Mata SE

pubmed logopapersNov 1 2025
We examine the transformative potential of artificial intelligence (AI) in medical imaging diagnosis, focusing on improving diagnostic accuracy and efficiency through advanced algorithms. It addresses the significant challenges preventing immediate clinical adoption of AI, specifically from technical, ethical, and legal perspectives. The aim is to highlight the current state of AI in medical imaging and outline the necessary steps to ensure safe, effective, and ethically sound clinical implementation. We conduct a comprehensive discussion, with special emphasis on the technical requirements for robust AI models, the ethical frameworks needed for responsible deployment, and the legal implications, including data privacy and regulatory compliance. Explainable artificial intelligence (XAI) is examined as a means to increase transparency and build trust among healthcare professionals and patients. The analysis reveals key challenges to AI integration in clinical settings, including the need for extensive high-quality datasets, model reliability, advanced infrastructure, and compliance with regulatory standards. The lack of explainability in AI outputs remains a barrier, with XAI identified as crucial for meeting transparency standards and enhancing trust among end users. Overcoming these barriers requires a collaborative, multidisciplinary approach to integrate AI into clinical practice responsibly. Addressing technical, ethical, and legal issues will support a softer transition, fostering a more accurate, efficient, and patient-centered healthcare system where AI augments traditional medical practices.

Artificial intelligence across the cancer care continuum.

Riaz IB, Khan MA, Osterman TJ

pubmed logopapersAug 15 2025
Artificial intelligence (AI) holds significant potential to enhance various aspects of oncology, spanning the cancer care continuum. This review provides an overview of current and emerging AI applications, from risk assessment and early detection to treatment and supportive care. AI-driven tools are being developed to integrate diverse data sources, including multi-omics and electronic health records, to improve cancer risk stratification and personalize prevention strategies. In screening and diagnosis, AI algorithms show promise in augmenting the accuracy and efficiency of medical image analysis and histopathology interpretation. AI also offers opportunities to refine treatment planning, optimize radiation therapy, and personalize systemic therapy selection. Furthermore, AI is explored for its potential to improve survivorship care by tailoring interventions and to enhance end-of-life care through improved symptom management and prognostic modeling. Beyond care delivery, AI augments clinical workflows, streamlines the dissemination of up-to-date evidence, and captures critical patient-reported outcomes for clinical decision support and outcomes assessment. However, the successful integration of AI into clinical practice requires addressing key challenges, including rigorous validation of algorithms, ensuring data privacy and security, and mitigating potential biases. Effective implementation necessitates interdisciplinary collaboration and comprehensive education for health care professionals. The synergistic interaction between AI and clinical expertise is crucial for realizing the potential of AI to contribute to personalized and effective cancer care. This review highlights the current state of AI in oncology and underscores the importance of responsible development and implementation.

Economic Evaluations and Equity in the Use of Artificial Intelligence in Imaging Examinations for Medical Diagnosis in People With Dermatological, Neurological, and Pulmonary Diseases: Systematic Review.

Santana GO, Couto RM, Loureiro RM, Furriel BCRS, de Paula LGN, Rother ET, de Paiva JPQ, Correia LR

pubmed logopapersAug 13 2025
Health care systems around the world face numerous challenges. Recent advances in artificial intelligence (AI) have offered promising solutions, particularly in diagnostic imaging. This systematic review focused on evaluating the economic feasibility of AI in real-world diagnostic imaging scenarios, specifically for dermatological, neurological, and pulmonary diseases. The central question was whether the use of AI in these diagnostic assessments improves economic outcomes and promotes equity in health care systems. This systematic review has 2 main components, economic evaluation and equity assessment. We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) tool to ensure adherence to best practices in systematic reviews. The protocol was registered with PROSPERO (International Prospective Register of Systematic Reviews), and we followed the PRISMA-E (Preferred Reporting Items for Systematic Reviews and Meta-Analyses - Equity Extension) guidelines for equity. Scientific articles reporting on economic evaluations or equity considerations related to the use of AI-based tools in diagnostic imaging in dermatology, neurology, or pulmonology were included in the study. The search was conducted in the PubMed, Embase, Scopus, and Web of Science databases. Methodological quality was assessed using the following checklists, CHEC (Consensus on Health Economic Criteria) for economic evaluations, EPHPP (Effective Public Health Practice Project) for equity evaluation studies, and Welte for transferability. The systematic review identified 9 publications within the scope of the research question, with sample sizes ranging from 122 to over 1.3 million participants. The majority of studies addressed economic evaluation (88.9%), with most studies addressing pulmonary diseases (n=6; 66.6%), followed by neurological diseases (n=2; 22.3%), and only 1 (11.1%) study addressing dermatological diseases. These studies had an average quality access of 87.5% on the CHEC checklist. Only 2 studies were found to be transferable to Brazil and other countries with a similar health context. The economic evaluation revealed that 87.5% of studies highlighted the benefits of using AI in dermatology, neurology, and pulmonology, highlighting significant cost-effectiveness outcomes, with the most advantageous being a negative cost-effectiveness ratio of -US $27,580 per QALY (quality-adjusted life year) for melanoma diagnosis, indicating substantial cost savings in this scenario. The only study assessing equity, based on 129,819 radiographic images, identified AI-assisted underdiagnosis, particularly in certain subgroups defined by gender, ethnicity, and socioeconomic status. This review underscores the importance of transparency in the description of AI tools and the representativeness of population subgroups to mitigate health disparities. As AI is rapidly being integrated into health care, detailed assessments are essential to ensure that benefits reach all patients, regardless of sociodemographic factors.

Enabling Physicians to Make an Informed Adoption Decision on Artificial Intelligence Applications in Medical Imaging Diagnostics: Qualitative Study.

Hennrich J, Doctor E, Körner MF, Lederman R, Eymann T

pubmed logopapersAug 12 2025
Artificial intelligence (AI) applications hold great promise for improving accuracy and efficiency in medical imaging diagnostics. However, despite the expected benefit of AI applications, widespread adoption of the technology is progressing slower than expected due to technological, organizational, and regulatory obstacles, and user-related barriers, with physicians playing a central role in adopting AI applications. This study aims to provide guidance on enabling physicians to make an informed adoption decision regarding AI applications by identifying and discussing measures to address key barriers from physicians' perspectives. We used a 2-step qualitative research approach. First, we conducted a structured literature review by screening 865 papers to identify potential enabling measures. Second, we interviewed 14 experts to evaluate the literature-based measures and enriched them. By analyzing the literature and interview transcripts, we revealed 11 measures, categorized into Enabling Adoption Decision Measures (eg, educating physicians, preparing future physicians, and providing transparency) and Supporting Adoption Measures (eg, implementation guidelines and AI marketplaces). These measures aim to inform physicians' decisions and support the adoption process. This study provides a comprehensive overview of measures to enable physicians to make an informed adoption decision on AI applications in medical imaging diagnostics. Thereby, we are the first to give specific recommendations on how to realize the potential of AI applications in medical imaging diagnostics from a user perspective.

Results of the 9th Scientific Workshop of the European Crohn's and Colitis Organisation (ECCO): Artificial Intelligence in Endoscopy, Radiology and Histology in IBD Diagnostics.

Mookhoek A, Sinonque P, Allocca M, Carter D, Ensari A, Iacucci M, Kopylov U, Verstockt B, Baumgart DC, Noor NM, El-Hussuna A, Sahnan K, Marigorta UM, Noviello D, Bossuyt P, Pellino G, Soriano A, de Laffolie J, Daperno M, Raine T, Cleynen I, Sebastian S

pubmed logopapersAug 12 2025
In this review, a comprehensive overview of the current state of artificial intelligence (AI) research in Inflammatory Bowel Disease (IBD) diagnostics in the domains of endoscopy, radiology and histology is presented. Moreover, key considerations for development of AI algorithms in medical image analysis are discussed. AI presents a potential breakthrough in real-time, objective and rapid endoscopic assessment, with implications for predicting disease progression. It is anticipated that, by harmonising multimodal data, AI will transform patient care through early diagnosis, accurate patient profiling and therapeutic response prediction. The ability of AI in cross-sectional medical imaging to improve diagnostic accuracy, automate and enable objective assessment of disease activity and predict clinical outcomes highlights its transformative potential. AI models have consistently outperformed traditional methods of image interpretation, particularly in complex areas such as differentiating IBD subtypes, identifying disease progression and complications. The use of AI in histology is a particularly dynamic research field. Implementation of AI algorithms in clinical practice is still lagging, a major hurdle being the lack of a digital workflow in many pathology institutes. Adoption is likely to start with implementation of automatic disease activity scoring. Beyond matching pathologist performance, algorithms may teach us more about IBD pathophysiology. While AI is set to substantially advance IBD diagnostics, various challenges such as heterogeneous datasets, retrospective designs and assessment of different endpoints must be addressed. Implementation of novel standards of reporting may drive an increase in research quality and overcome these obstacles.

Unconditional latent diffusion models memorize patient imaging data.

Dar SUH, Seyfarth M, Ayx I, Papavassiliu T, Schoenberg SO, Siepmann RM, Laqua FC, Kahmann J, Frey N, Baeßler B, Foersch S, Truhn D, Kather JN, Engelhardt S

pubmed logopapersAug 11 2025
Generative artificial intelligence models facilitate open-data sharing by proposing synthetic data as surrogates of real patient data. Despite the promise for healthcare, some of these models are susceptible to patient data memorization, where models generate patient data copies instead of novel synthetic samples, resulting in patient re-identification. Here we assess memorization in unconditional latent diffusion models by training them on a variety of datasets for synthetic data generation and detecting memorization with a self-supervised copy detection approach. We show a high degree of patient data memorization across all datasets, with approximately 37.2% of patient data detected as memorized and 68.7% of synthetic samples identified as patient data copies. Latent diffusion models are more susceptible to memorization than autoencoders and generative adversarial networks, and they outperform non-diffusion models in synthesis quality. Augmentation strategies during training, small architecture size and increasing datasets can reduce memorization, while overtraining the models can enhance it. These results emphasize the importance of carefully training generative models on private medical imaging datasets and examining the synthetic data to ensure patient privacy.

Ethical considerations and robustness of artificial neural networks in medical image analysis under data corruption.

Okunev M, Handelman D, Handelman A

pubmed logopapersAug 11 2025
Medicine is one of the most sensitive fields in which artificial intelligence (AI) is extensively used, spanning from medical image analysis to clinical support. Specifically, in medicine, where every decision may severely affect human lives, the issue of ensuring that AI systems operate ethically and produce results that align with ethical considerations is of great importance. In this work, we investigate the combination of several key parameters on the performance of artificial neural networks (ANNs) used for medical image analysis in the presence of data corruption or errors. For this purpose, we examined five different ANN architectures (AlexNet, LeNet 5, VGG16, ResNet-50, and Vision Transformers - ViT), and for each architecture, we checked its performance under varying combinations of training dataset sizes and percentages of images that are corrupted through mislabeling. The image mislabeling simulates deliberate or nondeliberate changes to the dataset, which may cause the AI system to produce unreliable results. We found that the five ANN architectures produce different results for the same task, both for cases with and without dataset modification, which implies that the selection of which ANN architecture to implement may have ethical aspects that need to be considered. We also found that label corruption resulted in a mixture of performance metrics tendencies, indicating that it is difficult to conclude whether label corruption has occurred. Our findings demonstrate the relation between ethics in AI and ANN architecture implementation and AI computational parameters used therefor, and raise awareness of the need to find appropriate ways to determine whether label corruption has occurred.

Deep learning in rib fracture imaging: study quality assessment using the Must AI Criteria-10 (MAIC-10) checklist for artificial intelligence in medical imaging.

Getzmann JM, Nulle K, Mennini C, Viglino U, Serpi F, Albano D, Messina C, Fusco S, Gitto S, Sconfienza LM

pubmed logopapersAug 9 2025
To analyze the methodological quality of studies on deep learning (DL) in rib fracture imaging with the Must AI Criteria-10 (MAIC-10) checklist, and to report insights and experiences regarding the applicability of the MAIC-10 checklist. An electronic literature search was conducted on the PubMed database. After selection of articles, three radiologists independently rated the articles according to MAIC-10. Differences of the MAIC-10 score for each checklist item were assessed using the Fleiss' kappa coefficient. A total of 25 original articles discussing DL applications in rib fracture imaging were identified. Most studies focused on fracture detection (n = 21, 84%). In most of the research papers, internal cross-validation of the dataset was performed (n = 16, 64%), while only six studies (24%) conducted external validation. The mean MAIC-10 score of the 25 studies was 5.63 (SD, 1.84; range 1-8), with the item "clinical need" being reported most consistently (100%) and the item "study design" being most frequently reported incompletely (94.8%). The average inter-rater agreement for the MAIC-10 score was 0.771. The MAIC-10 checklist is a valid tool for assessing the quality of AI research in medical imaging with good inter-rater agreement. With regard to rib fracture imaging, items such as "study design", "explainability", and "transparency" were often not comprehensively addressed. AI in medical imaging has become increasingly common. Therefore, quality control systems of published literature such as the MAIC-10 checklist are needed to ensure high quality research output. Quality control systems are needed for research on AI in medical imaging. The MAIC-10 checklist is a valid tool to assess AI in medical imaging research quality. Checklist items such as "study design", "explainability", and "transparency" are frequently addressed incomprehensively.

Parental and carer views on the use of AI in imaging for children: a national survey.

Agarwal G, Salami RK, Lee L, Martin H, Shantharam L, Thomas K, Ashworth E, Allan E, Yung KW, Pauling C, Leyden D, Arthurs OJ, Shelmerdine SC

pubmed logopapersAug 9 2025
Although the use of artificial intelligence (AI) in healthcare is increasing, stakeholder engagement remains poor, particularly relating to understanding parent/carer acceptance of AI tools in paediatric imaging. We explore these perceptions and compare them to the opinions of children and young people (CYAP). A UK national online survey was conducted, inviting parents, carers and guardians of children to participate. The survey was "live" from June 2022 to 2023. The survey included questions asking about respondents' views of AI in general, as well as in specific circumstances (e.g. fractures) with respect to children's healthcare. One hundred forty-six parents/carers (mean age = 45; range = 21-80) from all four nations of the UK responded. Most respondents (93/146, 64%) believed that AI would be more accurate at interpreting paediatric musculoskeletal radiographs than healthcare professionals, but had a strong preference for human supervision (66%). Whilst male respondents were more likely to believe that AI would be more accurate (55/72, 76%), they were twice as likely as female parents/carers to believe that AI use could result in their child's data falling into the wrong hands. Most respondents would like to be asked permission before AI is used for the interpretation of their child's scans (104/146, 71%). Notably, 79% of parents/carers prioritised accuracy over speed compared to 66% of CYAP. Parents/carers feel positively about AI for paediatric imaging but strongly discourage autonomous use. Acknowledging the diverse opinions of the patient population is vital in aiding the successful integration of AI for paediatric imaging. Parents/carers demonstrate a preference for AI use with human supervision that prioritises accuracy, transparency and institutional accountability. AI is welcomed as a supportive tool, but not as a substitute for human expertise. Parents/carers are accepting of AI use, with human supervision. Over half believe AI would replace doctors/nurses looking at bone X-rays within 5 years. Parents/carers are more likely than CYAP to trust AI's accuracy. Parents/carers are also more sceptical about AI data misuse.

Dense breasts and women's health: which screenings are essential?

Mota BS, Shimizu C, Reis YN, Gonçalves R, Soares Junior JM, Baracat EC, Filassi JR

pubmed logopapersAug 9 2025
This review synthesizes current evidence regarding optimal breast cancer screening strategies for women with dense breasts, a population at increased risk due to decreased mammographic sensitivity. A systematic literature review was performed in accordance with PRISMA criteria, covering MEDLINE, EMBASE, CINAHL Plus, Scopus, and Web of Science until May 2025. The analysis examines advanced imaging techniques such as digital breast tomosynthesis (DBT), contrast-enhanced spectral mammography (CESM), ultrasound, and magnetic resonance imaging (MRI), assessing their effectiveness in addressing the shortcomings of traditional mammography in dense breast tissue. The review rigorously evaluates the incorporation of risk stratification models, such as the BCSC, in customizing screening regimens, in conjunction with innovative technologies like liquid biopsy and artificial intelligence-based image analysis for improved risk prediction. A key emphasis is placed on the heterogeneity in international screening guidelines and the challenges in translating research findings to diverse clinical settings, particularly in resource-constrained environments. The discussion includes ethical implications regarding compulsory breast density notification and the possibility of intensifying disparities in health care. The review ultimately encourages the development of evidence-based, context-specific guidelines that facilitate equitable access to effective breast cancer screening for all women with dense breasts.
Page 1 of 13129 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.