Sort by:
Page 1 of 19186 results
Next

Comparing percent breast density assessments of an AI-based method with expert reader estimates: inter-observer variability.

Romanov S, Howell S, Harkness E, Gareth Evans D, Astley S, Fergie M

pubmed logopapersNov 1 2025
Breast density estimation is an important part of breast cancer risk assessment, as mammographic density is associated with risk. However, density assessed by multiple experts can be subject to high inter-observer variability, so automated methods are increasingly used. We investigate the inter-reader variability and risk prediction for expert assessors and a deep learning approach. Screening data from a cohort of 1328 women, case-control matched, was used to compare between two expert readers and between a single reader and a deep learning model, Manchester artificial intelligence - visual analog scale (MAI-VAS). Bland-Altman analysis was used to assess the variability and matched concordance index to assess risk. Although the mean differences for the two experiments were alike, the limits of agreement between MAI-VAS and a single reader are substantially lower at +SD (standard deviation) 21 (95% CI: 19.65, 21.69) -SD 22 (95% CI: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>-</mo> <mn>22.71</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>-</mo> <mn>20.68</mn></mrow> </math> ) than between two expert readers +SD 31 (95% CI: 32.08, 29.23) -SD 29 (95% CI: <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>-</mo> <mn>29.94</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>-</mo> <mn>27.09</mn></mrow> </math> ). In addition, breast cancer risk discrimination for the deep learning method and density readings from a single expert was similar, with a matched concordance of 0.628 (95% CI: 0.598, 0.658) and 0.624 (95% CI: 0.595, 0.654), respectively. The automatic method had a similar inter-view agreement to experts and maintained consistency across density quartiles. The artificial intelligence breast density assessment tool MAI-VAS has a better inter-observer agreement with a randomly selected expert reader than that between two expert readers. Deep learning-based density methods provide consistent density scores without compromising on breast cancer risk discrimination.

Sureness of classification of breast cancers as pure ductal carcinoma <i>in situ</i> or with invasive components on dynamic contrast-enhanced magnetic resonance imaging: application of likelihood assurance metrics for computer-aided diagnosis.

Whitney HM, Drukker K, Edwards A, Giger ML

pubmed logopapersNov 1 2025
Breast cancer may persist within milk ducts (ductal carcinoma <i>in situ</i>, DCIS) or advance into surrounding breast tissue (invasive ductal carcinoma, IDC). Occasionally, invasiveness in cancer may be underestimated during biopsy, leading to adjustments in the treatment plan based on unexpected surgical findings. Artificial intelligence/computer-aided diagnosis (AI/CADx) techniques in medical imaging may have the potential to predict whether a lesion is purely DCIS or exhibits a mixture of IDC and DCIS components, serving as a valuable supplement to biopsy findings. To enhance the evaluation of AI/CADx performance, assessing variability on a lesion-by-lesion basis via likelihood assurance measures could add value. We evaluated the performance in the task of distinguishing between pure DCIS and mixed IDC/DCIS breast cancers using computer-extracted radiomic features from dynamic contrast-enhanced magnetic resonance imaging using 0.632+ bootstrapping methods (2000 folds) on 550 lesions (135 pure DCIS, 415 mixed IDC/DCIS). Lesion-based likelihood assurance was measured using a sureness metric based on the 95% confidence interval of the classifier output for each lesion. The median and 95% CI of the 0.632+-corrected area under the receiver operating characteristic curve for the task of classifying lesions as pure DCIS or mixed IDC/DCIS were 0.81 [0.75, 0.86]. The sureness metric varied across the dataset with a range of 0.0002 (low sureness) to 0.96 (high sureness), with combinations of high and low classifier output and high and low sureness for some lesions. Sureness metrics can provide additional insights into the ability of CADx algorithms to pre-operatively predict whether a lesion is invasive.

Breast tumor diagnosis via multimodal deep learning using ultrasound B-mode and Nakagami images.

Muhtadi S, Gallippi CM

pubmed logopapersNov 1 2025
We propose and evaluate multimodal deep learning (DL) approaches that combine ultrasound (US) B-mode and Nakagami parametric images for breast tumor classification. It is hypothesized that integrating tissue brightness information from B-mode images with scattering properties from Nakagami images will enhance diagnostic performance compared with single-input approaches. An EfficientNetV2B0 network was used to develop multimodal DL frameworks that took as input (i) numerical two-dimensional (2D) maps or (ii) rendered red-green-blue (RGB) representations of both B-mode and Nakagami data. The diagnostic performance of these frameworks was compared with single-input counterparts using 831 US acquisitions from 264 patients. In addition, gradient-weighted class activation mapping was applied to evaluate diagnostically relevant information utilized by the different networks. The multimodal architectures demonstrated significantly higher area under the receiver operating characteristic curve (AUC) values ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ) than their monomodal counterparts, achieving an average improvement of 10.75%. In addition, the multimodal networks incorporated, on average, 15.70% more diagnostically relevant tissue information. Among the multimodal models, those using RGB representations as input outperformed those that utilized 2D numerical data maps ( <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ). The top-performing multimodal architecture achieved a mean AUC of 0.896 [95% confidence interval (CI): 0.813 to 0.959] when performance was assessed at the image level and 0.848 (95% CI: 0.755 to 0.903) when assessed at the lesion level. Incorporating B-mode and Nakagami information together in a multimodal DL framework improved classification outcomes and increased the amount of diagnostically relevant information accessed by networks, highlighting the potential for automating and standardizing US breast cancer diagnostics to enhance clinical outcomes.

Robust evaluation of tissue-specific radiomic features for classifying breast tissue density grades.

Dong V, Mankowski W, Silva Filho TM, McCarthy AM, Kontos D, Maidment ADA, Barufaldi B

pubmed logopapersNov 1 2025
Breast cancer risk depends on an accurate assessment of breast density due to lesion masking. Although governed by standardized guidelines, radiologist assessment of breast density is still highly variable. Automated breast density assessment tools leverage deep learning but are limited by model robustness and interpretability. We assessed the robustness of a feature selection methodology (RFE-SHAP) for classifying breast density grades using tissue-specific radiomic features extracted from raw central projections of digital breast tomosynthesis screenings ( <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>I</mi></mrow> </msub> <mo>=</mo> <mn>651</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub><mrow><mi>n</mi></mrow> <mrow><mi>II</mi></mrow> </msub> <mo>=</mo> <mn>100</mn></mrow> </math> ). RFE-SHAP leverages traditional and explainable AI methods to identify highly predictive and influential features. A simple logistic regression (LR) classifier was used to assess classification performance, and unsupervised clustering was employed to investigate the intrinsic separability of density grade classes. LR classifiers yielded cross-validated areas under the receiver operating characteristic (AUCs) per density grade of [ <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>A</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.909</mn> <mo>±</mo> <mn>0.032</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>B</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.858</mn> <mo>±</mo> <mn>0.027</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>C</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.927</mn> <mo>±</mo> <mn>0.013</mn></mrow> </math> , <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi></mrow> </math> : <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.890</mn> <mo>±</mo> <mn>0.089</mn></mrow> </math> ] and an AUC of <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.936</mn> <mo>±</mo> <mn>0.016</mn></mrow> </math> for classifying patients as nondense or dense. In external validation, we observed per density grade AUCs of [ <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>A</mi></mrow> </math> : 0.880, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>B</mi></mrow> </math> : 0.779, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>C</mi></mrow> </math> : 0.878, <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>D</mi></mrow> </math> : 0.673] and nondense/dense AUC of 0.823. Unsupervised clustering highlighted the ability of these features to characterize different density grades. Our RFE-SHAP feature selection methodology for classifying breast tissue density generalized well to validation datasets after accounting for natural class imbalance, and the identified radiomic features properly captured the progression of density grades. Our results potentiate future research into correlating selected radiomic features with clinical descriptors of breast tissue density.

MammosighTR: Nationwide Breast Cancer Screening Mammogram Dataset with BI-RADS Annotations for Artificial Intelligence Applications.

Koç U, Beşler MS, Sezer EA, Karakaş E, Özkaya YA, Evrimler Ş, Yalçın A, Kızıloğlu A, Kesimal U, Oruç M, Çankaya İ, Koç Keleş D, Merd N, Özkan E, Çevik Nİ, Gökhan MB, Boyraz Hayat B, Özer M, Tokur O, Işık F, Tezcan A, Battal F, Yüzkat M, Sebik NB, Karademir F, Topuz Y, Sezer Ö, Varlı S, Ülgü MM, Akdoğan E, Birinci Ş

pubmed logopapersAug 13 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content</i>. The MammosighTR dataset, derived from Türkiye's national breast cancer screening mammography program, provides BI-RADS-labeled mammograms with detailed annotations on breast composition and lesion quadrant location, which may be useful for developing and testing AI models in breast cancer detection. ©RSNA, 2025.

MRI-based texture analysis for breast cancer subtype classification in a multi-ethnic population.

Ab Mumin N, Liew CH, Ong SQ, Wong JHD, Ramli Hamid MT, Rahmat K, Ng KH

pubmed logopapersAug 12 2025
Breast cancer, the most prevalent cancer among women globally, is classified into molecular subtypes (luminal, HER2-enriched, and triple-negative) to guide treatment and prognosis. Traditional subtyping methods, such as gene profiling and immunohistochemistry, are invasive and limited by intratumoural heterogeneity. MRI radiomics analysis offers a non-invasive alternative by extracting quantitative imaging features, yet its application in diverse, multi-ethnic populations remains underexplored. This study aimed to identify predictive radiomic features from multiple MRI sequences to classify breast cancer subtypes, compare the performance of four MRI sequences, and determine the optimal machine learning (ML) model for this task. A total of 162 retrospective breast cancer MRI cases were semi-automatically segmented, and 256 radiomic features were extracted. A multimodal ML framework integrating random forest and recursive feature elimination was developed to identify the most predictive features based on the area under the receiver operating characteristic curve (AUROC). Key predictive features included age, tumour size, margin characteristics, and intensity patterns within the tumour. Among MRI sequences, inversion recovery and T1 post-contrast performed best for subtyping. In addition, texture-based ML models effectively emulated visual assessment, demonstrating the potential of radiomics in non-invasive breast cancer subtyping. With the top ten features, the AUROC values are 0.735, 0.630, and 0.747 for luminal, HER2-enriched, and triple-negative, respectively. These findings highlight the role of MRI-based texture features and advanced ML in enhancing breast cancer diagnosis, offering a non-invasive tool for personalised treatment planning while complementing existing clinical workflows.

Diagnostic performance of ultrasound S-Detect technology in evaluating BI-RADS-4 breast nodules ≤ 20 mm and > 20 mm.

Xing B, Gu C, Fu C, Zhang B, Tan Y

pubmed logopapersAug 12 2025
This study aimed to explore the diagnostic performance of ultrasound S-Detect in differentiating Breast Imaging-Reporting and Data System (BI-RADS) 4 breast nodules ≤ 20 mm and > 20 mm. Between November 2020 and November 2022, a total of 382 breast nodules in 312 patients were classified as BI-RADS-4 by conventional ultrasound. Using pathology results as the gold standard, we applied receiver operator characteristics (ROC), sensitivity (SE), specificity (SP), accuracy (ACC), positive predictive value (PPV), and negative predictive value (NPV) to analyze the diagnostic value of BI-RADS, S-Detect, and the two techniques in combination (Co-Detect) in the diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. There were 382 BI-RADS-4 nodules, of which 151 were pathologically confirmed as malignant, and 231 as benign. In lesions ≤ 20 mm, the SE, SP, ACC, PPV, NPV, and area under the curve (AUC) of the BI-RADS group were 77.27%, 89.73%, 85.71%, 78.16%, 89.24%, 0.835, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 92.05%, 78.92%, 83.15%, 67.50%, 95.43%, 0.855, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 89.77%, 93.51%, 92.31%, 86.81%, 95.05%, 0.916, respectively. The differences of SE, ACC, NPV, and AUC between the BI-RADS group and the Co-Detect group were statistically significant (P < 0.05). In lesions > 20 mm, SE, SP, ACC, PPV, NPV, and AUC of the BI-RADS group were 88.99%, 89.13%, 88.99%, 91.80%, 85.42%, 0.890, respectively. SE, SP, ACC, PPV, NPV, and AUC of the S-Detect group were 98.41%, 69.57%, 86.24%, 81.58%, 96.97%, 0.840, respectively. SE, SP, ACC, PPV, NPV, and AUC of the Co-Detect group were 98.41%, 91.30%, 95.41%, 93.94%, 97.67%, 0.949, respectively. A total of 166 BI-RADS 4 A nodules were downgraded to category 3 by Co-Detect, with 160 (96.4%) confirmed as benign and 6 (all ≤ 20 mm) as false negatives. Conversely, 25 nodules were upgraded to 4B, of which 19 (76.0%) were malignant. The difference in AUC between the BI-RADS group and the Co-Detect group was statistically significant (P < 0.05). S-Detect combined with BI-RADS is effective in the differential diagnosis of BI-RADS 4 breast nodules ≤ 20 mm and > 20 mm. However, its performance is particularly pronounced in lesions ≤ 20 mm, where it contributes to a significant reduction in unnecessary biopsies.

Are [18F]FDG PET/CT imaging and cell blood count-derived biomarkers robust non-invasive surrogates for tumor-infiltrating lymphocytes in early-stage breast cancer?

Seban RD, Rebaud L, Djerroudi L, Vincent-Salomon A, Bidard FC, Champion L, Buvat I

pubmed logopapersAug 12 2025
Tumor-infiltrating lymphocytes (TILs) are key immune biomarkers associated with prognosis and treatment response in early-stage breast cancer (BC), particularly in the triple-negative subtype. This study aimed to evaluate whether [18F]FDG PET/CT imaging and routine cell blood count (CBC)-derived biomarkers can serve as non-invasive surrogates for TILs, using machine-learning models. We retrospectively analyzed 358 patients with biopsy-proven early-stage invasive BC who underwent pre-treatment [18F]FDG PET/CT imaging. PET-derived biomarkers were extracted from the primary tumor, lymph nodes, and lymphoid organs (spleen and bone marrow). CBC-derived biomarkers included neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR). TILs were assessed histologically and categorized as low (0-10%), intermediate (11-59%), or high (≥ 60%). Correlations were assessed using Spearman's rank coefficient, and classification and regression models were built using several machine-learning algorithms. Tumor SUVmax and tumor SUVmean showed the highest correlation with TIL levels (ρ = 0.29 and 0.30 respectively, p < 0.001 for both), but overall associations between TILs and PET or CBC-derived biomarkers were weak. No CBC-derived biomarker showed significant correlation or discriminative performance. Machine-learning models failed to predict TIL levels with satisfactory accuracy (maximum balanced accuracy = 0.66). Lymphoid organ metrics (SLR, BLR) and CBC-derived parameters did not significantly enhance predictive value. In this study, neither [18F]FDG PET/CT nor routine CBC-derived biomarkers reliably predict TILs levels in early-stage BC. This observation was made in presence of potential scanner-related variability and for a restricted set of usual PET metrics. Future models should incorporate more targeted imaging approaches, such as immunoPET, to non-invasively assess immune infiltration with higher specificity and improve personalized treatment strategies.

18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Jiang Z, Low J, Huang C, Yue Y, Njeh C, Oderinde O

pubmed logopapersAug 11 2025
Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer. In this study, we developed deep radiomic models to enhance the prediction of chemotherapy response after the first treatment cycle. 18F-Fludeoxyglucose PET/CT imaging data and clinical record from 60 breast cancer patients were retrospectively obtained from the Cancer Imaging Archive. PET/CT scans were conducted at three distinct stages of treatment; prior to the initiation of chemotherapy (T1), following the first cycle of chemotherapy (T2), and after the full chemotherapy regimen (T3). The patient's primary gross tumor volume (GTV) was delineated on PET images using a 40% threshold of the maximum standardized uptake value (SUVmax). Radiomic features were extracted from the GTV based on the PET/CT images. In addition, a squeeze-and-excitation network (SENet) deep learning model was employed to generate additional features from the PET/CT images for combined analysis. A XGBoost machine learning model was developed and compared with the conventional machine learning algorithm [random forest (RF), logistic regression (LR) and support vector machine (SVM)]. The performance of each model was assessed using receiver operating characteristics area under the curve (ROC AUC) analysis, and prediction accuracy in a validation cohort. Model performance was evaluated through fivefold cross-validation on the entire cohort, with data splits stratified by treatment response categories to ensure balanced representation. The AUC values for the machine learning models using only radiomic features were 0.85(XGBoost), 0.76 (RF), 0.80 (LR), and 0.59 (SVM), with XGBoost showing the best performance. After incorporating additional deep learning-derived features from SENet, the AUC values increased to 0.92, 0.88, 0.90, and 0.61, respectively, demonstrating significant improvements in predictive accuracy. Predictions were based on pre-treatment (T1) and post-first-cycle (T2) imaging data, enabling early assessment of chemotherapy response after the initial treatment cycle. Integrating deep learning-derived features significantly enhanced the performance of predictive models for chemotherapy response in breast cancer patients. This study demonstrated the superior predictive capability of the XGBoost model, emphasizing its potential to optimize personalized therapeutic strategies by accurately identifying patients unlikely to respond to chemotherapy after the first treatment cycle.

Dense breasts and women's health: which screenings are essential?

Mota BS, Shimizu C, Reis YN, Gonçalves R, Soares Junior JM, Baracat EC, Filassi JR

pubmed logopapersAug 9 2025
This review synthesizes current evidence regarding optimal breast cancer screening strategies for women with dense breasts, a population at increased risk due to decreased mammographic sensitivity. A systematic literature review was performed in accordance with PRISMA criteria, covering MEDLINE, EMBASE, CINAHL Plus, Scopus, and Web of Science until May 2025. The analysis examines advanced imaging techniques such as digital breast tomosynthesis (DBT), contrast-enhanced spectral mammography (CESM), ultrasound, and magnetic resonance imaging (MRI), assessing their effectiveness in addressing the shortcomings of traditional mammography in dense breast tissue. The review rigorously evaluates the incorporation of risk stratification models, such as the BCSC, in customizing screening regimens, in conjunction with innovative technologies like liquid biopsy and artificial intelligence-based image analysis for improved risk prediction. A key emphasis is placed on the heterogeneity in international screening guidelines and the challenges in translating research findings to diverse clinical settings, particularly in resource-constrained environments. The discussion includes ethical implications regarding compulsory breast density notification and the possibility of intensifying disparities in health care. The review ultimately encourages the development of evidence-based, context-specific guidelines that facilitate equitable access to effective breast cancer screening for all women with dense breasts.
Page 1 of 19186 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.