Sort by:
Page 1 of 215 results

Challenges in Implementing Artificial Intelligence in Breast Cancer Screening Programs: Systematic Review and Framework for Safe Adoption.

Goh S, Goh RSJ, Chong B, Ng QX, Koh GCH, Ngiam KY, Hartman M

pubmed logopapersMay 15 2025
Artificial intelligence (AI) studies show promise in enhancing accuracy and efficiency in mammographic screening programs worldwide. However, its integration into clinical workflows faces several challenges, including unintended errors, the need for professional training, and ethical concerns. Notably, specific frameworks for AI imaging in breast cancer screening are still lacking. This study aims to identify the challenges associated with implementing AI in breast screening programs and to apply the Consolidated Framework for Implementation Research (CFIR) to discuss a practical governance framework for AI in this context. Three electronic databases (PubMed, Embase, and MEDLINE) were searched using combinations of the keywords "artificial intelligence," "regulation," "governance," "breast cancer," and "screening." Original studies evaluating AI in breast cancer detection or discussing challenges related to AI implementation in this setting were eligible for review. Findings were narratively synthesized and subsequently mapped directly onto the constructs within the CFIR. A total of 1240 results were retrieved, with 20 original studies ultimately included in this systematic review. The majority (n=19) focused on AI-enhanced mammography, while 1 addressed AI-enhanced ultrasound for women with dense breasts. Most studies originated from the United States (n=5) and the United Kingdom (n=4), with publication years ranging from 2019 to 2023. The quality of papers was rated as moderate to high. The key challenges identified were reproducibility, evidentiary standards, technological concerns, trust issues, as well as ethical, legal, societal concerns, and postadoption uncertainty. By aligning these findings with the CFIR constructs, action plans targeting the main challenges were incorporated into the framework, facilitating a structured approach to addressing these issues. This systematic review identifies key challenges in implementing AI in breast cancer screening, emphasizing the need for consistency, robust evidentiary standards, technological advancements, user trust, ethical frameworks, legal safeguards, and societal benefits. These findings can serve as a blueprint for policy makers, clinicians, and AI developers to collaboratively advance AI adoption in breast cancer screening. PROSPERO CRD42024553889; https://tinyurl.com/mu4nwcxt.

Optimizing breast lesions diagnosis and decision-making with a deep learning fusion model integrating ultrasound and mammography: a dual-center retrospective study.

Xu Z, Zhong S, Gao Y, Huo J, Xu W, Huang W, Huang X, Zhang C, Zhou J, Dan Q, Li L, Jiang Z, Lang T, Xu S, Lu J, Wen G, Zhang Y, Li Y

pubmed logopapersMay 14 2025
This study aimed to develop a BI-RADS network (DL-UM) via integrating ultrasound (US) and mammography (MG) images and explore its performance in improving breast lesion diagnosis and management when collaborating with radiologists, particularly in cases with discordant US and MG Breast Imaging Reporting and Data System (BI-RADS) classifications. We retrospectively collected image data from 1283 women with breast lesions who underwent both US and MG within one month at two medical centres and categorised them into concordant and discordant BI-RADS classification subgroups. We developed a DL-UM network via integrating US and MG images, and DL networks using US (DL-U) or MG (DL-M) alone, respectively. The performance of DL-UM network for breast lesion diagnosis was evaluated using ROC curves and compared to DL-U and DL-M networks in the external testing dataset. The diagnostic performance of radiologists with different levels of experience under the assistance of DL-UM network was also evaluated. In the external testing dataset, DL-UM outperformed DL-M in sensitivity (0.962 vs. 0.833, P = 0.016) and DL-U in specificity (0.667 vs. 0.526, P = 0.030), respectively. In the discordant BI-RADS classification subgroup, DL-UM achieved an AUC of 0.910. The diagnostic performance of four radiologists improved when collaborating with the DL-UM network, with AUCs increased from 0.674-0.772 to 0.889-0.910, specificities from 52.1%-75.0 to 81.3-87.5% and reducing unnecessary biopsies by 16.1%-24.6%, particularly for junior radiologists. Meanwhile, DL-UM outputs and heatmaps enhanced radiologists' trust and improved interobserver agreement between US and MG, with weighted kappa increased from 0.048 to 0.713 (P < 0.05). The DL-UM network, integrating complementary US and MG features, assisted radiologists in improving breast lesion diagnosis and management, potentially reducing unnecessary biopsies.

Paradigm-Shifting Attention-based Hybrid View Learning for Enhanced Mammography Breast Cancer Classification with Multi-Scale and Multi-View Fusion.

Zhao H, Zhang C, Wang F, Li Z, Gao S

pubmed logopapersMay 12 2025
Breast cancer poses a serious threat to women's health, and its early detection is crucial for enhancing patient survival rates. While deep learning has significantly advanced mammographic image analysis, existing methods struggle to balance between view consistency with input adaptability. Furthermore, current models face challenges in accurately capturing multi-scale features, especially when subtle lesion variations across different scales are involved. To address this challenge, this paper proposes a Hybrid View Learning (HVL) paradigm that unifies traditional Single-View and Multi-View Learning approaches. The core component of this paradigm, our Attention-based Hybrid View Learning (AHVL) framework, incorporates two essential attention mechanisms: Contrastive Switch Attention (CSA) and Selective Pooling Attention (SPA). The CSA mechanism flexibly alternates between self-attention and cross-attention based on data integrity, integrating a pre-trained language model for contrastive learning to enhance model stability. Meanwhile, the SPA module employs multi-scale feature pooling and selection to capture critical features from mammographic images, overcoming the limitations of traditional models that struggle with fine-grained lesion detection. Experimental validation on the INbreast and CBIS-DDSM datasets shows that the AHVL framework outperforms both single-view and multi-view methods, especially under extreme view missing conditions. Even with an 80% missing rate on both datasets, AHVL maintains the highest accuracy and experiences the smallest performance decline in metrics like F1 score and AUC-PR, demonstrating its robustness and stability. This study redefines mammographic image analysis by leveraging attention-based hybrid view processing, setting a new standard for precise and efficient breast cancer diagnosis.

Identification of HER2-over-expression, HER2-low-expression, and HER2-zero-expression statuses in breast cancer based on <sup>18</sup>F-FDG PET/CT radiomics.

Hou X, Chen K, Luo H, Xu W, Li X

pubmed logopapersMay 12 2025
According to the updated classification system, human epidermal growth factor receptor 2 (HER2) expression statuses are divided into the following three groups: HER2-over-expression, HER2-low-expression, and HER2-zero-expression. HER2-negative expression was reclassified into HER2-low-expression and HER2-zero-expression. This study aimed to identify three different HER2 expression statuses for breast cancer (BC) patients using PET/CT radiomics and clinicopathological characteristics. A total of 315 BC patients who met the inclusion and exclusion criteria from two institutions were retrospectively included. The patients in institution 1 were divided into the training set and the independent validation set according to the ratio of 7:3, and institution 2 was used as the external validation set. According to the results of pathological examination, all BC patients were divided into HER2-over-expression, HER2-low-expression, and HER2-zero-expression. First, PET/CT radiomic features and clinicopathological features based on each patient were extracted and collected. Second, multiple methods were used to perform feature screening and feature selection. Then, four machine learning classifiers, including logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), were constructed to identify HER2-over-expression vs. others, HER2-low-expression vs. others, and HER2-zero-expression vs. others. The receiver operator characteristic (ROC) curve was plotted to measure the model's predictive power. According to the feature screening process, 8, 10, and 2 radiomics features and 2 clinicopathological features were finally selected to construct three prediction models (HER2-over-expression vs. others, HER2-low-expression vs. others, and HER2-zero-expression vs. others). For HER2-over-expression vs. others, the RF model outperformed other models with an AUC value of 0.843 (95%CI: 0.774-0.897), 0.785 (95%CI: 0.665-0.877), and 0.788 (95%CI: 0.708-0.868) in the training set, independent validation set, and external validation set. Concerning HER2-low-expression vs. others, the outperformance of the LR model over other models was identified with an AUC value of 0.783 (95%CI: 0.708-0.846), 0.756 (95%CI: 0.634-0.854), and 0.779 (95%CI: 0.698-0.860) in the training set, independent validation set, and external validation set. Whereas, the KNN model was confirmed as the optimal model to distinguish HER2-zero-expression from others, with an AUC value of 0.929 (95%CI: 0.890-0.958), 0.847 (95%CI: 0.764-0.910), and 0.835 (95%CI: 0.762-0.908) in the training set, independent validation set, and external validation set. Combined PET/CT radiomic models integrating with clinicopathological characteristics are non-invasively predictive of different HER2 statuses of BC patients.

Automated field-in-field planning for tangential breast radiation therapy based on digitally reconstructed radiograph.

Srikornkan P, Khamfongkhruea C, Intanin P, Thongsawad S

pubmed logopapersMay 12 2025
The tangential field-in-field (FIF) technique is a widely used method in breast radiation therapy, known for its efficiency and the reduced number of fields required in treatment planning. However, it is labor-intensive, requiring manual shaping of the multileaf collimator (MLC) to minimize hot spots. This study aims to develop a novel automated FIF planning approach for tangential breast radiation therapy using Digitally Reconstructed Radiograph (DRR) images. A total of 78 patients were selected to train and test a fluence map prediction model based on U-Net architecture. DRR images were used as input data to predict the fluence maps. The predicted fluence maps for each treatment plan were then converted into MLC positions and exported as Digital Imaging and Communications in Medicine (DICOM) files. These files were used to recalculate the dose distribution and assess dosimetric parameters for both the PTV and OARs. The mean absolute error (MAE) between the predicted and original fluence map was 0.007 ± 0.002. The result of gamma analysis indicates strong agreement between the predicted and original fluence maps, with gamma passing rate values of 95.47 ± 4.27 for the 3 %/3 mm criteria, 94.65 ± 4.32 for the 3 %/2 mm criteria, and 83.4 ± 12.14 for the 2 %/2 mm criteria. The plan quality, in terms of tumor coverage and doses to organs at risk (OARs), showed no significant differences between the automated FIF and original plans. The automated plans yielded promising results, with plan quality comparable to the original.

Study on predicting breast cancer Ki-67 expression using a combination of radiomics and deep learning based on multiparametric MRI.

Wang W, Wang Z, Wang L, Li J, Pang Z, Qu Y, Cui S

pubmed logopapersMay 11 2025
To develop a multiparametric breast MRI radiomics and deep learning-based multimodal model for predicting preoperative Ki-67 expression status in breast cancer, with the potential to advance individualized treatment and precision medicine for breast cancer patients. We included 176 invasive breast cancer patients who underwent breast MRI and had Ki-67 results. The dataset was randomly split into training (70 %) and test (30 %) sets. Features from T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and dynamic contrast-enhanced MRI (DCE-MRI) were fused. Separate models were created for each sequence: T1, DWI, T2, and DCE. A multiparametric MRI (mp-MRI) model was then developed by combining features from all sequences. Models were trained using five-fold cross-validation and evaluated on the test set with receiver operating characteristic (ROC) curve area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score. Delong's test compared the mp-MRI model with the other models, with P < 0.05 indicating statistical significance. All five models demonstrated good performance, with AUCs of 0.83 for the T1 model, 0.85 for the DWI model, 0.90 for the T2 model, 0.92 for the DCE model, and 0.96 for the mp-MRI model. Delong's test indicated statistically significant differences between the mp-MRI model and the other four models, with P values < 0.05. The multiparametric breast MRI radiomics and deep learning-based multimodal model performs well in predicting preoperative Ki-67 expression status in breast cancer.

Construction of risk prediction model of sentinel lymph node metastasis in breast cancer patients based on machine learning algorithm.

Yang Q, Liu C, Wang Y, Dong G, Sun J

pubmed logopapersMay 8 2025
The aim of this study was to develop and validate a machine learning (ML) based prediction model for sentinel lymph node metastasis in breast cancer to identify patients with a high risk of sentinel lymph node metastasis. In this machine learning study, we retrospectively collected 225 female breast cancer patients who underwent sentinel lymph node biopsy (SLNB). Feature screening was performed using the logistic regression analysis. Subsequently, five ML algorithms, namely LOGIT, LASSO, XGBOOST, RANDOM FOREST model and GBM model were employed to train and develop an ML model. In addition, model interpretation was performed by the Shapley Additive Explanations (SHAP) analysis to clarify the importance of each feature of the model and its decision basis. Combined univariate and multivariate logistic regression analysis, identified Multifocal, LVI, Maximum Diameter, Shape US, Maximum Cortical Thickness as significant predictors. We than successfully leveraged machine learning algorithms, particularly the RANDOM FOREST model, to develop a predictive model for sentinel lymph node metastasis in breast cancer. Finally, the SHAP method identified Maximum Diameter and Maximum Cortical Thickness as the primary decision factors influencing the ML model's predictions. With the integration of pathological and imaging characteristics, ML algorithm can accurately predict sentinel lymph node metastasis in breast cancer patients. The RANDOM FOREST model showed ideal performance. With the incorporation of these models in the clinic, can helpful for clinicians to identify patients at risk of sentinel lymph node metastasis of breast cancer and make more reasonable treatment decisions.

Ultrasound-based deep learning radiomics for enhanced axillary lymph node metastasis assessment: a multicenter study.

Zhang D, Zhou W, Lu WW, Qin XC, Zhang XY, Luo YH, Wu J, Wang JL, Zhao JJ, Zhang CX

pubmed logopapersMay 8 2025
Accurate preoperative assessment of axillary lymph node metastasis (ALNM) in breast cancer is crucial for guiding treatment decisions. This study aimed to develop a deep-learning radiomics model for assessing ALNM and to evaluate its impact on radiologists' diagnostic accuracy. This multicenter study included 866 breast cancer patients from 6 hospitals. The data were categorized into training, internal test, external test, and prospective test sets. Deep learning and handcrafted radiomics features were extracted from ultrasound images of primary tumors and lymph nodes. The tumor score and LN score were calculated following feature selection, and a clinical-radiomics model was constructed based on these scores along with clinical-ultrasonic risk factors. The model's performance was validated across the 3 test sets. Additionally, the diagnostic performance of radiologists, with and without model assistance, was evaluated. The clinical-radiomics model demonstrated robust discrimination with AUCs of 0.94, 0.92, 0.91, and 0.95 in the training, internal test, external test, and prospective test sets, respectively. It surpassed the clinical model and single score in all sets (P < .05). Decision curve analysis and clinical impact curves validated the clinical utility of the clinical-radiomics model. Moreover, the model significantly improved radiologists' diagnostic accuracy, with AUCs increasing from 0.71 to 0.82 for the junior radiologist and from 0.75 to 0.85 for the senior radiologist. The clinical-radiomics model effectively predicts ALNM in breast cancer patients using noninvasive ultrasound features. Additionally, it enhances radiologists' diagnostic accuracy, potentially optimizing resource allocation in breast cancer management.

Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study.

Yan Y, Liu Y, Wang Y, Jiang T, Xie J, Zhou Y, Liu X, Yan M, Zheng Q, Xu H, Chen J, Sui L, Chen C, Ru R, Wang K, Zhao A, Li S, Zhu Y, Zhang Y, Wang VY, Xu D

pubmed logopapersMay 8 2025
Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes Tumors Hierarchical Diagnosis Model (PTs-HDM) for preoperative identification and grading. Ultrasound images from five hospitals were retrospectively collected, with all patients having undergone surgical pathological confirmation of either PTs or fibroadenomas (FAs). PTs-HDM follows a two-stage classification: first distinguishing PTs from FAs, then grading PTs into benign or borderline/malignant. Model performance metrics including AUC and accuracy were quantitatively evaluated. A comparative analysis was conducted between the algorithm's diagnostic capabilities and those of radiologists with varying clinical experience within an external validation cohort. Through the provision of PTs-HDM's automated classification outputs and associated thermal activation mapping guidance, we systematically assessed the enhancement in radiologists' diagnostic concordance and classification accuracy. A total of 712 patients were included. On the external test set, PTs-HDM achieved an AUC of 0.883, accuracy of 87.3% for PT vs. FA classification. Subgroup analysis showed high accuracy for tumors < 2 cm (90.9%). In hierarchical classification, the model obtained an AUC of 0.856 and accuracy of 80.9%. Radiologists' performance improved with PTs-HDM assistance, with binary classification accuracy increasing from 82.7%, 67.7%, and 64.2-87.6%, 76.6%, and 82.1% for senior, attending, and resident radiologists, respectively. Their hierarchical classification AUCs improved from 0.566 to 0.827 to 0.725-0.837. PTs-HDM also enhanced inter-radiologist consistency, increasing Kappa values from - 0.05 to 0.41 to 0.12 to 0.65, and the intraclass correlation coefficient from 0.19 to 0.45. PTs-HDM shows strong diagnostic performance, especially for small lesions, and improves radiologists' accuracy across all experience levels, bridging diagnostic gaps and providing reliable support for PTs' hierarchical diagnosis.
Page 1 of 215 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.