A Clinical Neuroimaging Platform for Rapid, Automated Lesion Detection and Personalized Post-Stroke Outcome Prediction
Brzus, M., Griffis, J. C., Riley, C. J., Bruss, J., Shea, C., Johnson, H. J., Boes, A. D.
•preprint•May 11 2025Predicting long-term functional outcomes for individuals with stroke is a significant challenge. Solving this challenge will open new opportunities for improving stroke management by informing acute interventions and guiding personalized rehabilitation strategies. The location of the stroke is a key predictor of outcomes, yet no clinically deployed tools incorporate lesion location information for outcome prognostication. This study responds to this critical need by introducing a fully automated, three-stage neuroimaging processing and machine learning pipeline that predicts personalized outcomes from clinical imaging in adult ischemic stroke patients. In the first stage, our system automatically processes raw DICOM inputs, registers the brain to a standard template, and uses deep learning models to segment the stroke lesion. In the second stage, lesion location and automatically derived network features are input into statistical models trained to predict long-term impairments from a large independent cohort of lesion patients. In the third stage, a structured PDF report is generated using a large language model that describes the strokes location, the arterial distribution, and personalized prognostic information. We demonstrate the viability of this approach in a proof-of-concept application predicting select cognitive outcomes in a stroke cohort. Brain-behavior models were pre-trained to predict chronic impairment on 28 different cognitive outcomes in a large cohort of patients with focal brain lesions (N=604). The automated pipeline used these models to predict outcomes from clinically acquired MRIs in an independent ischemic stroke cohort (N=153). Starting from raw clinical DICOM images, we show that our pipeline can generate outcome predictions for individual patients in less than 3 minutes with 96% concordance relative to methods requiring manual processing. We also show that prediction accuracy is enhanced using models that incorporate lesion location, lesion-associated network information, and demographics. Our results provide a strong proof-of-concept and lay the groundwork for developing imaging-based clinical tools for stroke outcome prognostication.