Sort by:
Page 1 of 218 results
Next

Segmentation of clinical imagery for improved epidural stimulation to address spinal cord injury

Matelsky, J. K., Sharma, P., Johnson, E. C., Wang, S., Boakye, M., Angeli, C., Forrest, G. F., Harkema, S. J., Tenore, F.

medrxiv logopreprintJun 20 2025
Spinal cord injury (SCI) can severely impair motor and autonomic function, with long-term consequences for quality of life. Epidural stimulation has emerged as a promising intervention, offering partial recovery by activating neural circuits below the injury. To make this therapy effective in practice, precise placement of stimulation electrodes is essential -- and that requires accurate segmentation of spinal cord structures in MRI data. We present a protocol for manual segmentation tailored to SCI anatomy, and evaluated a deep learning approach using a U-Net architecture to automate this segmentation process. Our approach yields accurate, efficient segmentation that identify potential electrode placement sites with high fidelity. Preliminary results suggest that this framework can accelerate SCI MRI analysis and improve planning for epidural stimulation, helping bridge the gap between advanced neurotechnologies and real-world clinical application with faster surgeries and more accurate electrode placement.

An Open-Source Generalizable Deep Learning Framework for Automated Corneal Segmentation in Anterior Segment Optical Coherence Tomography Imaging

Kandakji, L., Liu, S., Balal, S., Moghul, I., Allan, B., Tuft, S., Gore, D., Pontikos, N.

medrxiv logopreprintJun 20 2025
PurposeTo develop a deep learning model - Cornea nnU-Net Extractor (CUNEX) - for full-thickness corneal segmentation of anterior segment optical coherence tomography (AS-OCT) images and evaluate its utility in artificial intelligence (AI) research. MethodsWe trained and evaluated CUNEX using nnU-Net on 600 AS-OCT images (CSO MS-39) from 300 patients: 100 normal, 100 keratoconus (KC), and 100 Fuchs endothelial corneal dystrophy (FECD) eyes. To assess generalizability, we externally validated CUNEX on 1,168 AS-OCT images from an infectious keratitis dataset acquired from a different device (Casia SS-1000). We benchmarked CUNEX against two recent models, CorneaNet and ScLNet. We then applied CUNEX to our dataset of 194,599 scans from 37,499 patients as preprocessing for a classification model evaluating whether segmentation improves AI prediction, including age, sex, and disease staging (KC and FECD). ResultsCUNEX achieved Dice similarity coefficient (DSC) and intersection over union (IoU) scores ranging from 94-95% and 90-99%, respectively, across healthy, KC, and FECD eyes. This was similar to ScLNet (within 3%) but better than CorneaNet (8-35% lower). On external validation, CUNEX maintained high performance (DSC 83%; IoU 71%) while ScLNet (DSC 14%; IoU 8%) and CorneaNet (DSC 16%; IoU 9%) failed to generalize. Unexpectedly, segmentation minimally impacted classification accuracy except for sex prediction, where accuracy dropped from 81 to 68%, suggesting sex-related features may lie outside the cornea. ConclusionCUNEX delivers the first open-source generalizable corneal segmentation model using the latest framework, supporting its use in clinical analysis and AI workflows across diseases and imaging platforms. It is available at https://github.com/lkandakji/CUNEX.

A Deep Learning Lung Cancer Segmentation Pipeline to Facilitate CT-based Radiomics

So, A. C. P., Cheng, D., Aslani, S., Azimbagirad, M., Yamada, D., Dunn, R., Josephides, E., McDowall, E., Henry, A.-R., Bille, A., Sivarasan, N., Karapanagiotou, E., Jacob, J., Pennycuick, A.

medrxiv logopreprintJun 18 2025
BackgroundCT-based radio-biomarkers could provide non-invasive insights into tumour biology to risk-stratify patients. One of the limitations is laborious manual segmentation of regions-of-interest (ROI). We present a deep learning auto-segmentation pipeline for radiomic analysis. Patients and Methods153 patients with resected stage 2A-3B non-small cell lung cancer (NSCLCs) had tumours segmented using nnU-Net with review by two clinicians. The nnU-Net was pretrained with anatomical priors in non-cancerous lungs and finetuned on NSCLCs. Three ROIs were segmented: intra-tumoural, peri-tumoural, and whole lung. 1967 features were extracted using PyRadiomics. Feature reproducibility was tested using segmentation perturbations. Features were selected using minimum-redundancy-maximum-relevance with Random Forest-recursive feature elimination nested in 500 bootstraps. ResultsAuto-segmentation time was [~]36 seconds/series. Mean volumetric and surface Dice-Sorensen coefficient (DSC) scores were 0.84 ({+/-}0.28), and 0.79 ({+/-}0.34) respectively. DSC were significantly correlated with tumour shape (sphericity, diameter) and location (worse with chest wall adherence), but not batch effects (e.g. contrast, reconstruction kernel). 6.5% cases had missed segmentations; 6.5% required major changes. Pre-training on anatomical priors resulted in better segmentations compared to training on tumour-labels alone (p<0.001) and tumour with anatomical labels (p<0.001). Most radiomic features were not reproducible following perturbations and resampling. Adding radiomic features, however, did not significantly improve the clinical model in predicting 2-year disease-free survival: AUCs 0.67 (95%CI 0.59-0.75) vs 0.63 (95%CI 0.54-0.71) respectively (p=0.28). ConclusionOur study demonstrates that integrating auto-segmentation into radio-biomarker discovery is feasible with high efficiency and accuracy. Whilst radiomic analysis show limited reproducibility, our auto-segmentation may allow more robust radio-biomarker analysis using deep learning features.

Protocol of the observational study STRATUM-OS: First step in the development and validation of the STRATUM tool based on multimodal data processing to assist surgery in patients affected by intra-axial brain tumours

Fabelo, H., Ramallo-Farina, Y., Morera, J., Pineiro, J. F., Lagares, A., Jimenez-Roldan, L., Burstrom, G., Garcia-Bello, M. A., Garcia-Perez, L., Falero, R., Gonzalez, M., Duque, S., Rodriguez-Jimenez, C., Hernandez, M., Delgado-Sanchez, J. J., Paredes, A. B., Hernandez, G., Ponce, P., Leon, R., Gonzalez-Martin, J. M., Rodriguez-Esparragon, F., Callico, G. M., Wagner, A. M., Clavo, B., STRATUM,

medrxiv logopreprintJun 13 2025
IntroductionIntegrated digital diagnostics can support complex surgeries in many anatomic sites, and brain tumour surgery represents one of the most complex cases. Neurosurgeons face several challenges during brain tumour surgeries, such as differentiating critical tissue from brain tumour margins. To overcome these challenges, the STRATUM project will develop a 3D decision support tool for brain surgery guidance and diagnostics based on multimodal data processing, including hyperspectral imaging, integrated as a point-of-care computing tool in neurosurgical workflows. This paper reports the protocol for the development and technical validation of the STRATUM tool. Methods and analysisThis international multicentre, prospective, open, observational cohort study, STRATUM-OS (study: 28 months, pre-recruitment: 2 months, recruitment: 20 months, follow-up: 6 months), with no control group, will collect data from 320 patients undergoing standard neurosurgical procedures to: (1) develop and technically validate the STRATUM tool, and (2) collect the outcome measures for comparing the standard procedure versus the standard procedure plus the use of the STRATUM tool during surgery in a subsequent historically controlled non-randomized clinical trial. Ethics and disseminationThe protocol was approved by the participant Ethics Committees. Results will be disseminated in scientific conferences and peer-reviewed journals. Trial registration number[Pending Number] ARTICLE SUMMARYO_ST_ABSStrengths and limitations of this studyC_ST_ABSO_LISTRATUM-OS will be the first multicentre prospective observational study to develop and technically validate a 3D decision support tool for brain surgery guidance and diagnostics in real-time based on artificial intelligence and multimodal data processing, including the emerging hyperspectral imaging modality. C_LIO_LIThis study encompasses a prospective collection of multimodal pre, intra and postoperative medical data, including innovative imaging modalities, from patients with intra-axial brain tumours. C_LIO_LIThis large observational study will act as historical control in a subsequent clinical trial to evaluate a fully-working prototype. C_LIO_LIAlthough the estimated sample size is deemed adequate for the purpose of the study, the complexity of the clinical context and the type of surgery could potentially lead to under-recruitment and under-representation of less prevalent tumour types. C_LI

Beyond Benchmarks: Towards Robust Artificial Intelligence Bone Segmentation in Socio-Technical Systems

Xie, K., Gruber, L. J., Crampen, M., Li, Y., Ferreira, A., Tappeiner, E., Gillot, M., Schepers, J., Xu, J., Pankert, T., Beyer, M., Shahamiri, N., ten Brink, R., Dot, G., Weschke, C., van Nistelrooij, N., Verhelst, P.-J., Guo, Y., Xu, Z., Bienzeisler, J., Rashad, A., Flügge, T., Cotton, R., Vinayahalingam, S., Ilesan, R., Raith, S., Madsen, D., Seibold, C., Xi, T., Berge, S., Nebelung, S., Kodym, O., Sundqvist, O., Thieringer, F., Lamecker, H., Coppens, A., Potrusil, T., Kraeima, J., Witjes, M., Wu, G., Chen, X., Lambrechts, A., Cevidanes, L. H. S., Zachow, S., Hermans, A., Truhn, D., Alves,

medrxiv logopreprintJun 13 2025
Despite the advances in automated medical image segmentation, AI models still underperform in various clinical settings, challenging real-world integration. In this multicenter evaluation, we analyzed 20 state-of-the-art mandibular segmentation models across 19,218 segmentations of 1,000 clinically resampled CT/CBCT scans. We show that segmentation accuracy varies by up to 25% depending on socio-technical factors such as voxel size, bone orientation, and patient conditions such as osteosynthesis or pathology. Higher sharpness, isotropic smaller voxels, and neutral orientation significantly improved results, while metallic osteosynthesis and anatomical complexity led to significant degradation. Our findings challenge the common view of AI models as "plug-and-play" tools and suggest evidence-based optimization recommendations for both clinicians and developers. This will in turn boost the integration of AI segmentation tools in routine healthcare.

CEREBLEED: Automated quantification and severity scoring of intracranial hemorrhage on non-contrast CT

Cepeda, S., Esteban-Sinovas, O., Arrese, I., Sarabia, R.

medrxiv logopreprintJun 13 2025
BackgroundIntracranial hemorrhage (ICH), whether spontaneous or traumatic, is a neurological emergency with high morbidity and mortality. Accurate assessment of severity is essential for neurosurgical decision-making. This study aimed to develop and evaluate a fully automated, deep learning-based tool for the standardized assessment of ICH severity, based on the segmentation of the hemorrhage and intracranial structures, and the computation of an objective severity index. MethodsNon-contrast cranial CT scans from patients with spontaneous or traumatic ICH were retrospectively collected from public datasets and a tertiary care center. Deep learning models were trained to segment hemorrhages and intracranial structures. These segmentations were used to compute a severity index reflecting bleeding burden and mass effect through volumetric relationships. Segmentation performance was evaluated on a hold-out test cohort. In a prospective cohort, the severity index was assessed in relation to expert-rated CT severity, clinical outcomes, and the need for urgent neurosurgical intervention. ResultsA total of 1,110 non-contrast cranial CT scans were analyzed, 900 from the retrospective cohort and 200 from the prospective evaluation cohort. The binary segmentation model achieved a median Dice score of 0.90 for total hemorrhage. The multilabel model yielded Dice scores ranging from 0.55 to 0.94 across hemorrhage subtypes. The severity index significantly correlated with expert-rated CT severity (p < 0.001), the modified Rankin Scale (p = 0.007), and the Glasgow Outcome Scale-Extended (p = 0.039), and independently predicted the need for urgent surgery (p < 0.001). A threshold [~]300 was identified as a decision point for surgical management (AUC = 0.83). ConclusionWe developed a fully automated and openly accessible pipeline for the analysis of non-contrast cranial CT in intracranial hemorrhage. It computes a novel index that objectively quantifies hemorrhage severity and is significantly associated with clinically relevant outcomes, including the need for urgent neurosurgical intervention.

AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study

Yi, J., Patel, K., Miller, R. J., Marcinkiewicz, A. M., Shanbhag, A., Hijazi, W., Dharmavaram, N., Lemley, M., Zhou, J., Zhang, W., Liang, J. X., Ramirez, G., Builoff, V., Slipczuk, L., Travin, M., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R., Al-Mallah, M., Ruddy, T. D., Einstein, A. J., Feher, A., Miller, E. J., Acampa, W., Knight, S., Le, V., Mason, S., Calsavara, V. F., Chareonthaitawee, P., Wopperer, S., Kwan, A. C., Wang, L., Berman, D. S., Dey, D., Di Carli, M. F., Slomka, P.

medrxiv logopreprintJun 11 2025
BackgroundHepatic steatosis (HS) is a common cardiometabolic risk factor frequently present but under- diagnosed in patients with suspected or known coronary artery disease. We used artificial intelligence (AI) to automatically quantify hepatic tissue measures for identifying HS from CT attenuation correction (CTAC) scans during myocardial perfusion imaging (MPI) and evaluate their added prognostic value for all-cause mortality prediction. MethodsThis study included 27039 consecutive patients [57% male] with MPI scans from nine sites. We used an AI model to segment liver and spleen on low dose CTAC scans and quantify the liver measures, and the difference of liver minus spleen (LmS) measures. HS was defined as mean liver attenuation < 40 Hounsfield units (HU) or LmS attenuation < -10 HU. Additionally, we used seven sites to develop an AI liver risk index (LIRI) for comprehensive hepatic assessment by integrating the hepatic measures and two external sites to validate its improved prognostic value and generalizability for all-cause mortality prediction over HS. FindingsMedian (interquartile range [IQR]) age was 67 [58, 75] years and body mass index (BMI) was 29.5 [25.5, 34.7] kg/m2, with diabetes in 8950 (33%) patients. The algorithm identified HS in 6579 (24%) patients. During median [IQR] follow-up of 3.58 [1.86, 5.15] years, 4836 (18%) patients died. HS was associated with increased mortality risk overall (adjusted hazard ratio (HR): 1.14 [1.05, 1.24], p=0.0016) and in subpopulations. LIRI provided higher prognostic value than HS after adjustments overall (adjusted HR 1.5 [1.32, 1.69], p<0.0001 vs HR 1.16 [1.02, 1.31], p=0.0204) and in subpopulations. InterpretationsAI-based hepatic measures automatically identify HS from CTAC scans in patients undergoing MPI without additional radiation dose or physician interaction. Integrated liver assessment combining multiple hepatic imaging measures improved risk stratification for all-cause mortality. FundingNational Heart, Lung, and Blood Institute/National Institutes of Health. Research in context Evidence before this studyExisting studies show that fully automated hepatic quantification analysis from chest computed tomography (CT) scans is feasible. While hepatic measures show significant potential for improving risk stratification and patient management, CT attenuation correction (CTAC) scans from patients undergoing myocardial perfusion imaging (MPI) have rarely been utilized for concurrent and automated volumetric hepatic analysis beyond its current utilization for attenuation correction and coronary artery calcium burden assessment. We conducted a literature review on PubMed and Google Scholar on April 1st, 2025, using the following keywords: ("liver" OR "hepatic") AND ("quantification" OR "measure") AND ("risk stratification" OR "survival analysis" OR "prognosis" OR "prognostic prediction") AND ("CT" OR "computed tomography"). Previous studies have established approaches for the identification of hepatic steatosis (HS) and its prognostic value in various small- scale cohorts using either invasive biopsy or non-invasive imaging approaches. However, CT-based non- invasive imaging, existing research predominantly focuses on manual region-of-interest (ROI)-based hepatic quantification from selected CT slices or on identifying hepatic steatosis without comprehensive prognostic assessment in large-scale and multi-site cohorts, which hinders the association evaluation of hepatic steatosis for risk stratification in clinical routine with less precise estimates, weak statistical reliability, and limited subgroup analysis to assess bias effects. No existing studies investigated the prognostic value of hepatic steatosis measured in consecutive patients undergoing MPI. These patients usually present with multiple cardiovascular risk factors such as hypertension, dyslipidemia, diabetes and family history of coronary disease. Whether hepatic measures could provide added prognostic value over existing cardiometabolic factors is unknown. Furthermore, despite the diverse hepatic measures on CT in existing literature, integrated AI-based assessment has not been investigated before though it may improve the risk stratification further over HS. Lastly, previous research relied on dedicated CT scans performed for screening purposes. CTAC scans obtained routinely with MPI had never been utilized for automated HS detection and prognostic evaluation, despite being readily available at no additional cost or radiation exposure. Added value of this studyIn this multi-center (nine sites) international (three countries) study of 27039 consecutive patients undergoing myocardial perfusion imaging (MPI) with PET or SPECT, we used an innovative artificial intelligence (AI)- based approach for automatically segmenting the entire liver and spleen volumes from low-dose ungated CT attenuation correction (CTAC) scans acquired during MPI, followed by the identification of hepatic steatosis. We evaluated the added prognostic value of several key hepatic metrics--liver measures (mean attenuation, coefficient of variation (CoV), entropy, and standard deviation), and similar measures for the difference of liver minus spleen (LmS)--derived from volumetric quantification of CTAC scans with adjustment for existing clinical and MPI variables. A HS imaging criterion (HSIC: a patient has moderate or severe hepatic steatosis if the mean liver attenuation is < 40 Hounsfield unit (HU) or the difference of liver mean attenuation and spleen mean attenuation is < -10 HU) was used to detect HS. These hepatic metrics were assessed for their ability to predict all-cause mortality in a large-scale and multi-center patient cohort. Additionally, we developed and validated an eXtreme Gradient Boosting decision tree model for integrated liver assessment and risk stratification by combining the hepatic metrics with the demographic variables to derive a liver risk index (LIRI). Our results demonstrated strong associations between the hepatic metrics and all-cause mortality, even after adjustment for clinical variables, myocardial perfusion, and atherosclerosis biomarkers. Our results revealed significant differences in the association of HS with mortality in different sex, age, and race subpopulations. Similar differences were also observed in various chronic disease subpopulations such as obese and diabetic subpopulations. These results highlighted the modifying effects of various patient characteristics, partially accounting for the inconsistent association observed in existing studies. Compared with individual hepatic measures, LIRI showed significant improvement compared to HSIC-based HS in mortality prediction in external testing. All these demonstrate the feasibility of HS detection and integrated liver assessment from cardiac low-dose CT scans from MPI, which is also expected to apply for generic chest CT scans which have coverage of liver and spleen while prior studies used dedicated abdominal CT scans for such purposes. Implications of all the available evidenceRoutine point-of-care analysis of hepatic quantification can be seamlessly integrated into all MPI using CTAC scans to noninvasively identify HS at no additional cost or radiation exposure. The automatically derived hepatic metrics enhance risk stratification by providing additional prognostic value beyond existing clinical and imaging factors, and the LIRI enables comprehensive assessment of liver and further improves risk stratification and patient management.

Magnetic resonance imaging and the evaluation of vestibular schwannomas: a systematic review

Lee, K. S., Wijetilake, N., Connor, S., Vercauteren, T., Shapey, J.

medrxiv logopreprintJun 6 2025
IntroductionThe assessment of vestibular schwannoma (VS) requires a standardized measurement approach as growth is a key element in defining treatment strategy for VS. Volumetric measurements offer higher sensitivity and precision, but existing methods of segmentation, are labour-intensive, lack standardisation and are prone to variability and subjectivity. A new core set of measurement indicators reported consistently, will support clinical decision-making and facilitate evidence synthesis. This systematic review aimed to identify indicators used in 1) magnetic resonance imaging (MRI) acquisition and 2) measurement or 3) growth of VS. This work is expected to inform a Delphi consensus. MethodsSystematic searches of Medline, Embase and Cochrane Central were undertaken on 4th October 2024. Studies that assessed the evaluation of VS with MRI, between 2014 and 2024 were included. ResultsThe final dataset consisted of 102 studies and 19001 patients. Eighty-six (84.3%) studies employed post contrast T1 as the MRI acquisition of choice for evaluating VS. Nine (8.8%) studies additionally employed heavily weighted T2 sequences such as constructive interference in steady state (CISS) and FIESTA-C. Only 45 (44.1%) studies reported the slice thickness with the majority 38 (84.4%) choosing <3mm in thickness. Fifty-eight (56.8%) studies measured volume whilst 49 (48.0%) measured the largest linear dimension; 14 (13.7%) studies used both measurements. Four studies employed semi-automated or automated segmentation processes to measure the volumes of VS. Of 68 studies investigating growth, 54 (79.4%) provided a threshold. Significant variation in volumetric growth was observed but the threshold for significant percentage change reported by most studies was 20% (n = 18). ConclusionSubstantial variation in MRI acquisition, and methods for evaluating measurement and growth of VS, exists across the literature. This lack of standardization is likely attributed to resource constraints and the fact that currently available volumetric segmentation methods are very labour-intensive. Following the identification of the indicators employed in the literature, this study aims to develop a Delphi consensus for the standardized measurement of VS and uptake in employing a data-driven artificial intelligence-based measuring tools.

Deep learning-enabled MRI phenotyping uncovers regional body composition heterogeneity and disease associations in two European population cohorts

Mertens, C. J., Haentze, H., Ziegelmayer, S., Kather, J. N., Truhn, D., Kim, S. H., Busch, F., Weller, D., Wiestler, B., Graf, M., Bamberg, F., Schlett, C. L., Weiss, J. B., Ringhof, S., Can, E., Schulz-Menger, J., Niendorf, T., Lammert, J., Molwitz, I., Kader, A., Hering, A., Meddeb, A., Nawabi, J., Schulze, M. B., Keil, T., Willich, S. N., Krist, L., Hadamitzky, M., Hannemann, A., Bassermann, F., Rueckert, D., Pischon, T., Hapfelmeier, A., Makowski, M. R., Bressem, K. K., Adams, L. C.

medrxiv logopreprintJun 6 2025
Body mass index (BMI) does not account for substantial inter-individual differences in regional fat and muscle compartments, which are relevant for the prevalence of cardiometabolic and cancer conditions. We applied a validated deep learning pipeline for automated segmentation of whole-body MRI scans in 45,851 adults from the UK Biobank and German National Cohort, enabling harmonized quantification of visceral (VAT), gluteofemoral (GFAT), and abdominal subcutaneous adipose tissue (ASAT), liver fat fraction (LFF), and trunk muscle volume. Associations with clinical conditions were evaluated using compartment measures adjusted for age, sex, height, and BMI. Our analysis demonstrates that regional adiposity and muscle volume show distinct associations with cardiometabolic and cancer prevalence, and that substantial disease heterogeneity exists within BMI strata. The analytic framework and reference data presented here will support future risk stratification efforts and facilitate the integration of automated MRI phenotyping into large-scale population and clinical research.

Interpretable Machine Learning based Detection of Coeliac Disease

Jaeckle, F., Bryant, R., Denholm, J., Romero Diaz, J., Schreiber, B., Shenoy, V., Ekundayomi, D., Evans, S., Arends, M., Soilleux, E.

medrxiv logopreprintJun 4 2025
BackgroundCoeliac disease, an autoimmune disorder affecting approximately 1% of the global population, is typically diagnosed on a duodenal biopsy. However, inter-pathologist agreement on coeliac disease diagnosis is only around 80%. Existing machine learning solutions designed to improve coeliac disease diagnosis often lack interpretability, which is essential for building trust and enabling widespread clinical adoption. ObjectiveTo develop an interpretable AI model capable of segmenting key histological structures in duodenal biopsies, generating explainable segmentation masks, estimating intraepithelial lymphocyte (IEL)-to-enterocyte and villus-to-crypt ratios, and diagnosing coeliac disease. DesignSemantic segmentation models were trained to identify villi, crypts, IELs, and enterocytes using 49 annotated 2048x2048 patches at 40x magnification. IEL-to-enterocyte and villus-to-crypt ratios were calculated from segmentation masks, and a logistic regression model was trained on 172 images to diagnose coeliac disease based on these ratios. Evaluation was performed on an independent test set of 613 duodenal biopsy scans from a separate NHS Trust. ResultsThe villus-crypt segmentation model achieved a mean PR AUC of 80.5%, while the IEL-enterocyte model reached a PR AUC of 82%. The diagnostic model classified WSIs with 96% accuracy, 86% positive predictive value, and 98% negative predictive value on the independent test set. ConclusionsOur interpretable AI models accurately segmented key histological structures and diagnosed coeliac disease in unseen WSIs, demonstrating strong generalization performance. These models provide pathologists with reliable IEL-to-enterocyte and villus-to-crypt ratio estimates, enhancing diagnostic accuracy. Interpretable AI solutions like ours are essential for fostering trust among healthcare professionals and patients, complementing existing black-box methodologies. What is already known on this topicPathologist concordance in diagnosing coeliac disease from duodenal biopsies is consistently reported to be below 80%, highlighting diagnostic variability and the need for improved methods. Several recent studies have leveraged artificial intelligence (AI) to enhance coeliac disease diagnosis. However, most of these models operate as "black boxes," offering limited interpretability and transparency. The lack of explainability in AI-driven diagnostic tools prevents widespread adoption by healthcare professionals and reduces patient trust. What this study addsThis study presents an interpretable semantic segmentation algorithm capable of detecting the four key histological structures essential for diagnosing coeliac disease: crypts, villi, intraepithelial lymphocytes (IELs), and enterocytes. The model accurately estimates the IEL-to-enterocyte ratio and the villus-to-crypt ratio, the latter being an indicator of villous atrophy and crypt hyperplasia, thereby providing objective, reproducible metrics for diagnosis. The segmentation outputs allow for transparent, explainable decision-making, supporting pathologists in coeliac disease diagnosis with improved accuracy and confidence. This study presents an AI model that automates the estimation of the IEL-to-enterocyte ratio--a labour-intensive task currently performed manually by pathologists in limited biopsy regions. By minimising diagnostic variability and alleviating time constraints for pathologists, the model provides an efficient and practical solution to streamline the diagnostic workflow. Tested on an independent dataset from a previously unseen source, the model demonstrates explainability and generalizability, enhancing trust and encouraging adoption in routine clinical practice. Furthermore, this approach could set a new standard for AI-assisted duodenal biopsy evaluation, paving the way for the development of interpretable AI tools in pathology to address the critical challenges of limited pathologist availability and diagnostic inconsistencies.
Page 1 of 218 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.