A Unified Platform for Radiology Report Generation and Clinician-Centered AI Evaluation
Ma, Z., Yang, X., Atalay, Z., Yang, A., Collins, S., Bai, H., Bernstein, M., Baird, G., Jiao, Z.
Generative AI models have demonstrated strong potential in radiology report generation, but their clinical adoption depends on physician trust. In this study, we conducted a radiology-focused Turing test to evaluate how well attendings and residents distinguish AI-generated reports from those written by radiologists, and how their confidence and decision time reflect trust. we developed an integrated web-based platform comprising two core modules: Report Generation and Report Evaluation. Using the web-based platform, eight participants evaluated 48 anonymized X-ray cases, each paired with two reports from three comparison groups: radiologist vs. AI model 1, radiologist vs. AI model 2, and AI model 1 vs. AI model 2. Participants selected the AI-generated report, rated their confidence, and indicated report preference. Attendings outperformed residents in identifying AI-generated reports (49.9% vs. 41.1%) and exhibited longer decision times, suggesting more deliberate judgment. Both groups took more time when both reports were AI-generated. Our findings highlight the role of clinical experience in AI acceptance and the need for design strategies that foster trust in clinical applications. The project page of the evaluation platform is available at: https://zachatalay89.github.io/Labsite.