Sort by:
Page 1 of 13 results

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.

Deep learning aging marker from retinal images unveils sex-specific clinical and genetic signatures

Trofimova, O., Böttger, L., Bors, S., Pan, Y., Liefers, B., Beyeler, M. J., Presby, D. M., Bontempi, D., Hastings, J., Klaver, C. C. W., Bergmann, S.

medrxiv logopreprintJul 29 2025
Retinal fundus images offer a non-invasive window into systemic aging. Here, we fine-tuned a foundation model (RETFound) to predict chronological age from color fundus images in 71,343 participants from the UK Biobank, achieving a mean absolute error of 2.85 years. The resulting retinal age gap (RAG), i.e., the difference between predicted and chronological age, was associated with cardiometabolic traits, inflammation, cognitive performance, mortality, dementia, cancer, and incident cardiovascular disease. Genome-wide analyses identified genes related to longevity, metabolism, neurodegeneration, and age-related eye diseases. Sex-stratified models revealed consistent performance but divergent biological signatures: males had younger-appearing retinas and stronger links to metabolic syndrome, while in females, both model attention and genetic associations pointed to a greater involvement of retinal vasculature. Our study positions retinal aging as a biologically meaningful and sex-sensitive biomarker that can support more personalized approaches to risk assessment and aging-related healthcare.

Dynamic frame-by-frame motion correction for 18F-flurpiridaz PET-MPI using convolution neural network

Urs, M., Killekar, A., Builoff, V., Lemley, M., Wei, C.-C., Ramirez, G., Kavanagh, P., Buckley, C., Slomka, P. J.

medrxiv logopreprintJul 1 2025
PurposePrecise quantification of myocardial blood flow (MBF) and flow reserve (MFR) in 18F-flurpiridaz PET significantly relies on motion correction (MC). However, the manual frame-by-frame correction leads to significant inter-observer variability, time-consuming, and requires significant experience. We propose a deep learning (DL) framework for automatic MC of 18F-flurpiridaz PET. MethodsThe method employs a 3D ResNet based architecture that takes 3D PET volumes and outputs motion vectors. It was validated using 5-fold cross-validation on data from 32 sites of a Phase III clinical trial (NCT01347710). Manual corrections from two experienced operators served as ground truth, and data augmentation using simulated vectors enhanced training robustness. The study compared the DL approach to both manual and standard non-AI automatic MC methods, assessing agreement and diagnostic accuracy using minimal segmental MBF and MFR. ResultsThe area under the receiver operating characteristic curves (AUC) for significant CAD were comparable between DL-MC MBF, manual-MC MBF from Operators (AUC=0.897,0.892 and 0.889, respectively; p>0.05), standard non-AI automatic MC (AUC=0.877; p>0.05) and significantly higher than No-MC (AUC=0.835; p<0.05). Similar findings were observed with MFR. The 95% confidence limits for agreement with the operator were {+/-}0.49ml/g/min (mean difference = 0.00) for MFR and {+/-}0.24ml/g/min (mean difference = 0.00) for MBF. ConclusionDL-MC is significantly faster but diagnostically comparable to manual-MC. The quantitative results obtained with DL-MC for MBF and MFR are in excellent agreement with those manually corrected by experienced operators compared to standard non-AI automatic MC in patients undergoing 18F-flurpiridaz PET-MPI.
Page 1 of 13 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.