Sort by:
Page 1 of 14 results

Stacking Ensemble Learning-based Models Enabling Accurate Diagnosis of Cardiac Amyloidosis using SPECT/CT:an International and Multicentre Study

Mo, Q., Cui, J., Jia, S., Zhang, Y., Xiao, Y., Liu, C., Zhou, C., Spielvogel, C. P., Calabretta, R., Zhou, W., Cao, K., Hacker, M., Li, X., Zhao, M.

medrxiv logopreprintJun 23 2025
PURPOSECardiac amyloidosis (CA), a life-threatening infiltrative cardiomyopathy, can be non-invasively diagnosed using [99mTc]Tc-bisphosphonate SPECT/CT. However, subjective visual interpretation risks diagnostic inaccuracies. We developed and validated a machine learning (ML) framework leveraging SPECT/CT radiomics to automate CA detection. METHODSThis retrospective multicenter study analyzed 290 patients of suspected CA who underwent [99mTc]Tc-PYP or [99mTc]Tc-DPD SPECT/CT. Radiomic features were extracted from co-registered SPECT and CT images, harmonized via intra-class correlation and Pearson correlation filtering, and optimized through LASSO regression. A stacking ensemble model incorporating support vector machine (SVM), random forest (RF), gradient boosting decision tree (GBDT), and adaptive boosting (AdaBoost) classifiers was constructed. The model was validated using an internal validation set (n = 54) and two external test set (n = 54 and n = 58).Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration, and decision curve analysis (DCA). Feature importance was interpreted using SHapley Additive exPlanations (SHAP) values. RESULTSOf 290 patients, 117 (40.3%) had CA. The stacking radiomics model attained AUCs of 0.871, 0.824, and 0.839 in the validation, test 1, and test 2 cohorts, respectively, significantly outperforming the clinical model (AUC 0.546 in validation set, P<0.05). DCA demonstrated superior net benefit over the clinical model across relevant thresholds, and SHAP analysis highlighted wavelet-transformed first-order and texture features as key predictors. CONCLUSIONA stacking ML model with SPECT/CT radiomics improves CA diagnosis, showing strong generalizability across varied imaging protocols and populations and highlighting its potential as a decision-support tool.

AI-based identification of patients who benefit from revascularization: a multicenter study

Zhang, W., Miller, R. J., Patel, K., Shanbhag, A., Liang, J., Lemley, M., Ramirez, G., Builoff, V., Yi, J., Zhou, J., Kavanagh, P., Acampa, W., Bateman, T. M., Di Carli, M. F., Dorbala, S., Einstein, A. J., Fish, M. B., Hauser, M. T., Ruddy, T., Kaufmann, P. A., Miller, E. J., Sharir, T., Martins, M., Halcox, J., Chareonthaitawee, P., Dey, D., Berman, D., Slomka, P.

medrxiv logopreprintJun 12 2025
Background and AimsRevascularization in stable coronary artery disease often relies on ischemia severity, but we introduce an AI-driven approach that uses clinical and imaging data to estimate individualized treatment effects and guide personalized decisions. MethodsUsing a large, international registry from 13 centers, we developed an AI model to estimate individual treatment effects by simulating outcomes under alternative therapeutic strategies. The model was trained on an internal cohort constructed using 1:1 propensity score matching to emulate randomized controlled trials (RCTs), creating balanced patient pairs in which only the treatment strategy--early revascularization (defined as any procedure within 90 days of MPI) versus medical therapy--differed. This design allowed the model to estimate individualized treatment effects, forming the basis for counterfactual reasoning at the patient level. We then derived the AI-REVASC score, which quantifies the potential benefit, for each patient, of early revascularization. The score was validated in the held-out testing cohort using Cox regression. ResultsOf 45,252 patients, 19,935 (44.1%) were female, median age 65 (IQR: 57-73). During a median follow-up of 3.6 years (IQR: 2.7-4.9), 4,323 (9.6%) experienced MI or death. The AI model identified a group (n=1,335, 5.9%) that benefits from early revascularization with a propensity-adjusted hazard ratio of 0.50 (95% CI: 0.25-1.00). Patients identified for early revascularization had higher prevalence of hypertension, diabetes, dyslipidemia, and lower LVEF. ConclusionsThis study pioneers a scalable, data-driven approach that emulates randomized trials using retrospective data. The AI-REVASC score enables precision revascularization decisions where guidelines and RCTs fall short. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=104 SRC="FIGDIR/small/25329295v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@1df75d8org.highwire.dtl.DTLVardef@1b1ce68org.highwire.dtl.DTLVardef@663cdf_HPS_FORMAT_FIGEXP M_FIG C_FIG

Prediction of impulse control disorders in Parkinson's disease: a longitudinal machine learning study

Vamvakas, A., van Balkom, T., van Wingen, G., Booij, J., Weintraub, D., Berendse, H. W., van den Heuvel, O. A., Vriend, C.

medrxiv logopreprintJun 5 2025
BackgroundImpulse control disorders (ICD) in Parkinsons disease (PD) patients mainly occur as adverse effects of dopamine replacement therapy. Despite several known risk factors associated with ICD development, this cannot yet be accurately predicted at PD diagnosis. ObjectivesWe aimed to investigate the predictability of incident ICD by baseline measures of demographic, clinical, dopamine transporter single photon emission computed tomography (DAT-SPECT), and genetic variables. MethodsWe used demographic and clinical data of medication-free PD patients from two longitudinal datasets; Parkinsons Progression Markers Initiative (PPMI) (n=311) and Amsterdam UMC (n=72). We extracted radiomic and latent features from DAT-SPECT. We used single nucleotic polymorphisms (SNPs) from PPMIs NeuroX and Exome sequencing data. Four machine learning classifiers were trained on combinations of the input feature sets, to predict incident ICD at any follow-up assessment. Classification performance was measured with 10x5-fold cross-validation. ResultsICD prevalence at any follow-up was 0.32. The highest performance in predicting incident ICD (AUC=0.66) was achieved by the models trained on clinical features only. Anxiety severity and age of PD onset were identified as the most important features. Performance did not improve with adding features from DAT-SPECT or SNPs. We observed significantly higher performance (AUC=0.74) when classifying patients who developed ICD within four years from diagnosis compared with those tested negative for seven or more years. ConclusionsPrediction accuracy for later ICD development, at the time of PD diagnosis, is limited; however, it increases for shorter time-to-event predictions. Neither DAT-SPECT nor genetic data improve the predictability obtained using demographic and clinical variables alone.

ROC Analysis of Biomarker Combinations in Fragile X Syndrome-Specific Clinical Trials: Evaluating Treatment Efficacy via Exploratory Biomarkers

Norris, J. E., Berry-Kravis, E. M., Harnett, M. D., Reines, S. A., Reese, M., Auger, E. K., Outterson, A., Furman, J., Gurney, M. E., Ethridge, L. E.

medrxiv logopreprintMay 29 2025
Fragile X Syndrome (FXS) is a rare neurodevelopmental disorder caused by a trinucleotide repeat expansion on the 5 untranslated region of the FMR1 gene. FXS is characterized by intellectual disability, anxiety, sensory hypersensitivity, and difficulties with executive function. A recent phase 2 placebo-controlled clinical trial assessing BPN14770, a first-in-class phosphodiesterase 4D allosteric inhibitor, in 30 adult males (age 18-41 years) with FXS demonstrated cognitive improvements on the NIH Toolbox Cognitive Battery in domains related to language and caregiver reports of improvement in both daily functioning and language. However, individual physiological measures from electroencephalography (EEG) demonstrated only marginal significance for trial efficacy. A secondary analysis of resting state EEG data collected as part of the phase 2 clinical trial evaluating BPN14770 was conducted using a machine learning classification algorithm to classify trial conditions (i.e., baseline, drug, placebo) via linear EEG variable combinations. The algorithm identified a composite of peak alpha frequencies (PAF) across multiple brain regions as a potential biomarker demonstrating BPN14770 efficacy. Increased PAF from baseline was associated with drug but not placebo. Given the relationship between PAF and cognitive function among typically developed adults and those with intellectual disability, as well as previously reported reductions in alpha frequency and power in FXS, PAF represents a potential physiological measure of BPN14770 efficacy.
Page 1 of 14 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.