Sort by:
Page 1 of 11 results

Improving discriminative ability in mammographic microcalcification classification using deep learning: a novel double transfer learning approach validated with an explainable artificial intelligence technique

Arlan, K., Bjornstrom, M., Makela, T., Meretoja, T. J., Hukkinen, K.

medrxiv logopreprintAug 11 2025
BackgroundBreast microcalcification diagnostics are challenging due to their subtle presentation, overlapping with benign findings, and high inter-reader variability, often leading to unnecessary biopsies. While deep learning (DL) models - particularly deep convolutional neural networks (DCNNs) - have shown potential to improve diagnostic accuracy, their clinical application remains limited by the need for large annotated datasets and the "black box" nature of their decision-making. PurposeTo develop and validate a deep learning model (DCNN) using a double transfer learning (d-TL) strategy for classifying suspected mammographic microcalcifications, with explainable AI (XAI) techniques to support model interpretability. Material and methodsA retrospective dataset of 396 annotated regions of interest (ROIs) from full-field digital mammography (FFDM) images of 194 patients who underwent stereotactic vacuum-assisted biopsy at the Womens Hospital radiological department, Helsinki University Hospital, was collected. The dataset was randomly split into training and test sets (24% test set, balanced for benign and malignant cases). A ResNeXt-based DCNN was developed using a d-TL approach: first pretrained on ImageNet, then adapted using an intermediate mammography dataset before fine-tuning on the target microcalcification data. Saliency maps were generated using Gradient-weighted Class Activation Mapping (Grad-CAM) to evaluate the visual relevance of model predictions. Diagnostic performance was compared to a radiologists BI-RADS-based assessment, using final histopathology as the reference standard. ResultsThe ensemble DCNN achieved an area under the ROC curve (AUC) of 0.76, with 65% sensitivity, 83% specificity, 79% positive predictive value (PPV), and 70% accuracy. The radiologist achieved an AUC of 0.65 with 100% sensitivity but lower specificity (30%) and PPV (59%). Grad-CAM visualizations showed consistent activation of the correct ROIs, even in misclassified cases where confidence scores fell below the threshold. ConclusionThe DCNN model utilizing d-TL achieved performance comparable to radiologists, with higher specificity and PPV than BI-RADS. The approach addresses data limitation issues and may help reduce additional imaging and unnecessary biopsies.
Page 1 of 11 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.