Sort by:
Page 1 of 12113 results
Next

Improving discriminative ability in mammographic microcalcification classification using deep learning: a novel double transfer learning approach validated with an explainable artificial intelligence technique

Arlan, K., Bjornstrom, M., Makela, T., Meretoja, T. J., Hukkinen, K.

medrxiv logopreprintAug 11 2025
BackgroundBreast microcalcification diagnostics are challenging due to their subtle presentation, overlapping with benign findings, and high inter-reader variability, often leading to unnecessary biopsies. While deep learning (DL) models - particularly deep convolutional neural networks (DCNNs) - have shown potential to improve diagnostic accuracy, their clinical application remains limited by the need for large annotated datasets and the "black box" nature of their decision-making. PurposeTo develop and validate a deep learning model (DCNN) using a double transfer learning (d-TL) strategy for classifying suspected mammographic microcalcifications, with explainable AI (XAI) techniques to support model interpretability. Material and methodsA retrospective dataset of 396 annotated regions of interest (ROIs) from full-field digital mammography (FFDM) images of 194 patients who underwent stereotactic vacuum-assisted biopsy at the Womens Hospital radiological department, Helsinki University Hospital, was collected. The dataset was randomly split into training and test sets (24% test set, balanced for benign and malignant cases). A ResNeXt-based DCNN was developed using a d-TL approach: first pretrained on ImageNet, then adapted using an intermediate mammography dataset before fine-tuning on the target microcalcification data. Saliency maps were generated using Gradient-weighted Class Activation Mapping (Grad-CAM) to evaluate the visual relevance of model predictions. Diagnostic performance was compared to a radiologists BI-RADS-based assessment, using final histopathology as the reference standard. ResultsThe ensemble DCNN achieved an area under the ROC curve (AUC) of 0.76, with 65% sensitivity, 83% specificity, 79% positive predictive value (PPV), and 70% accuracy. The radiologist achieved an AUC of 0.65 with 100% sensitivity but lower specificity (30%) and PPV (59%). Grad-CAM visualizations showed consistent activation of the correct ROIs, even in misclassified cases where confidence scores fell below the threshold. ConclusionThe DCNN model utilizing d-TL achieved performance comparable to radiologists, with higher specificity and PPV than BI-RADS. The approach addresses data limitation issues and may help reduce additional imaging and unnecessary biopsies.

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.

Postmortem Validation of Quantitative MRI for White Matter Hyperintensities in Alzheimer's Disease

Mojtabai, M., Kumar, R., Honnorat, N., Li, K., Wang, D., Li, J., Lee, R. F., Richardson, T. E., Cavazos, J. E., Bouhrara, M., Toledo, J. B., Heckbert, S., Flanagan, M. E., Bieniek, K. F., Walker, J. M., Seshadri, S., Habes, M.

medrxiv logopreprintAug 8 2025
White matter hyperintensities (WMH) are frequently observed on MRI in aging and Alzheimers disease (AD), yet their microstructural pathology remains poorly characterized. Conventional MRI sequences provide limited information to describe the tissue abnormalities underlying WMH, while histopathology--the gold standard--can only be applied postmortem. Quantitative MRI (qMRI) offers promising non-invasive alternatives to postmortem histopathology, but lacks histological validation of these metrics in AD. In this study, we examined the relationship between MRI metrics and histopathology in postmortem brain scans from eight donors with AD from the South Texas Alzheimers Disease Research Center. Regions of interest are delineated by aligning MRI-identified WMH in the brain donor scans with postmortem histological sections. Histopathological features, including myelin integrity, tissue vacuolation, and gliosis, are quantified within these regions using machine learning. We report the correlations between these histopathological measures and two qMRI metrics: T2 and absolute myelin water signal (aMWS) maps, as well as conventional T1w/T2w MRI. The results derived from aMWS and T2 mapping indicate a strong association between WMH, myelin loss, and increased tissue vacuolation. Bland-Altman analyses indicated that T2 mapping showed more consistent agreement with histopathology, whereas the derived aMWS demonstrated signs of systematic bias. T1w/T2w values exhibited weaker associations with histological alterations. Additionally, we observed distinct patterns of gliosis in periventricular and subcortical WMH. Our study presents one of the first histopathological validations of qMRI in AD, confirming that aMWS and T2 mapping are robust, non-invasive biomarkers that offer promising ways to monitor white matter pathology in neurodegenerative disorders.

Explainable Cryobiopsy AI Model, CRAI, to Predict Disease Progression for Transbronchial Lung Cryobiopsies with Interstitial Pneumonia

Uegami, W., Okoshi, E. N., Lami, K., Nei, Y., Ozasa, M., Kataoka, K., Kitamura, Y., Kohashi, Y., Cooper, L. A. D., Sakanashi, H., Saito, Y., Kondoh, Y., the study group on CRYOSOLUTION,, Fukuoka, J.

medrxiv logopreprintAug 8 2025
BackgroundInterstitial lung disease (ILD) encompasses diverse pulmonary disorders with varied prognoses. Current pathological diagnoses suffer from inter-observer variability,necessitating more standardized approaches. We developed an ensemble model AI for cryobiopsy, CRAI, an artificial intelligence model to analyze transbronchial lung cryobiopsy (TBLC) specimens and predict patient outcomes. MethodsWe developed an explainable AI model, CRAI, to analyze TBLC. CRAI comprises seven modules for detecting histological features, generating 19 pathologically significant findings. A downstream XGBoost classifier was developed to predict disease progression using these findings. The models performance was evaluated using respiratory function changes and survival analysis in cross-validation and external test cohorts. FindingsIn the internal cross-validation (135 cases), the model predicted 105 cases without disease progression and 30 with disease progression. The annual {Delta}%FVC was -1.293 in the non-progressive group versus -5.198 in the progressive group, outperforming most pathologists diagnoses. In the external test cohort (48 cases), the model predicted 38 non-progressive and 10 progressive cases. Survival analysis demonstrated significantly shorter survival times in the progressive group (p=0.034). InterpretationCRAI provides a comprehensive, interpretable approach to analyzing TBLC specimens, offering potential for standardizing ILD diagnosis and predicting disease progression. The model could facilitate early identification of progressive cases and guide personalized therapeutic interventions. FundingNew Energy and Industrial Technology Development Organization (NEDO) and Japanese Ministry of Health, Labor, and Welfare.

Stacked CNN Architectures for Robust Brain Tumor MRI Classification

Rahi, A.

medrxiv logopreprintAug 7 2025
Brain tumor classification using MRI scans is crucial for early diagnosis and treatment planning. In this study, we first train a single Convolutional Neural Network (CNN) based on VGG16 [1], achieving a strong standalone test accuracy of 99.24% on a balanced dataset of 7,023 MRI images across four classes: glioma, meningioma, pituitary, and no tumor. To further improve classification performance, we implement three ensemble strategies: stacking, soft voting, and XGBoost-based ensembling [4], each trained on individually fine-tuned models. These ensemble methods significantly enhance prediction accuracy, with XGBoost achieving a perfect 100% accuracy, and voting reaching 99.54%. Evaluation metrics such as precision, recall, and F1-score confirm the robustness of the approach. This work demonstrates the power of combining fine-tuned deep learning models [5] for highly reliable brain tumor classification enhance prediction accuracy, with XGBoost achieving a perfect 100% accuracy, and voting reaching 99.54%. Evaluation metrics such as precision, recall, and F1-score confirm the robustness of the approach. This work demonstrates the power of combining fine-tuned deep learning models for highly reliable brain tumor classification.

Longitudinal development of sex differences in the limbic system is associated with age, puberty and mental health

Matte Bon, G., Walther, J., Comasco, E., Derntl, B., Kaufmann, T.

medrxiv logopreprintAug 7 2025
Sex differences in mental health become more evident across adolescence, with a two-fold increase of prevalence of mood disorders in females compared to males. The brain underpinnings remain understudied. Here, we investigated the role of age, puberty and mental health in determining the longitudinal development of sex differences in brain structure. We captured sex differences in limbic and non-limbic structures using machine learning models trained in cross-sectional brain imaging data of 1132 youths, yielding limbic and non-limbic estimates of brain sex. Applied to two independent longitudinal samples (total: 8184 youths), our models revealed pronounced sex differences in brain structure with increasing age. For females, brain sex was sensitive to pubertal development (menarche) over time and, for limbic structures, to mood-related mental health. Our findings highlight the limbic system as a key contributor to the development of sex differences in the brain and the potential of machine learning models for brain sex classification to investigate sex-specific processes relevant to mental health.

Machine Learning-Based Reconstruction of 2D MRI for Quantitative Morphometry in Epilepsy

Ratcliffe, C., Taylor, P. N., de Bezenac, C., Das, K., Biswas, S., Marson, A., Keller, S. S.

medrxiv logopreprintAug 6 2025
IntroductionStructural neuroimaging analyses require research quality images, acquired with costly MRI acquisitions. Isotropic (3D-T1) images are desirable for quantitative analyses, however a routine compromise in the clinical setting is to acquire anisotropic (2D-T1) analogues for qualitative visual inspection. ML (Machine learning-based) software have shown promise in addressing some of the limitations of 2D-T1 scans in research applications, yet their efficacy in quantitative research is generally poorly understood. Pathology-related abnormalities of the subcortical structures have previously been identified in idiopathic generalised epilepsy (IGE), which have been overlooked based on visual inspection, through the use of quantitative morphometric analyses. As such, IGE biomarkers present a suitable model in which to evaluate the applicability of image preprocessing methods. This study therefore explores subcortical structural biomarkers of IGE, first in our silver standard 3D-T1 scans, then in 2D-T1 scans that were either untransformed, resampled using a classical interpolation approach, or synthesised with a resolution and contrast agnostic ML model (the latter of which is compared to a separate model). Methods2D-T1 and 3D-T1 MRI scans were acquired during the same scanning session for 33 individuals with drug-responsive IGE (age mean 32.16 {+/-} SD = 14.20, male n = 14) and 42 individuals with drug-resistant IGE (31.76 {+/-} 11.12, 17), all diagnosed at the Walton Centre NHS Foundation Trust Liverpool, alongside 39 age- and sex-matched healthy controls (32.32 {+/-} 8.65, 16). The untransformed 2D-T1 scans were resampled into isotropic images using NiBabel (res-T1), and preprocessed into synthetic isotropic images using SynthSR (syn-T1). For the 3D-T1, 2D-T1, res-T1, and syn-T1 images, the recon-all command from FreeSurfer 8.0.0 was used to create parcellations of 174 anatomical regions (equivalent to the 174 regional parcellations provided as part of the DL+DiReCT pipeline), defined by the aseg and Destrieux atlases, and FSL run_first_all was used to segment subcortical surface shapes. The new ML FreeSurfer pipeline, recon-all-clinical, was also tested in the 2D-T1, 3D-T1, and res-T1 images. As a model comparison for SynthSR, the DL+DiReCT pipeline was used to provide segmentations of the 2D-T1 and res-T1 images, including estimates of regional volume and thickness. Spatial overlap and intraclass correlations between the morphometrics of the eight resulting parcellations were first determined, then subcortical surface shape abnormalities associated with IGE were identified by comparing the FSL run_first_all outputs of patients with controls. ResultsWhen standardised to the metrics derived from the 3D-T1 scans, cortical volume and thickness estimates trended lower for the 2D-T1, res-T1, syn-T1, and DL+DiReCT outputs, whereas subcortical volume estimates were more coherent. Dice coefficients revealed an acceptable spatial similarity between the cortices of the 3D-T1 scans and the other images overall, and was higher in the subcortical structures. Intraclass correlation coefficients were consistently lowest when metrics were computed for model-derived inputs, and estimates of thickness were less similar to the ground truth than those of volume. For the people with epilepsy, the 3D-T1 scans showed significant surface deflations across various subcortical structures when compared to healthy controls. Analysis of the 2D-T1 scans enabled the reliable detection of a subset of subcortical abnormalities, whereas analyses of the res-T1 and syn-T1 images were more prone to false-positive results. ConclusionsResampling and ML image synthesis methods do not currently attenuate partial volume effects resulting from low through plane resolution in anisotropic MRI scans, instead quantitative analyses using 2D-T1 scans should be interpreted with caution, and researchers should consider the potential implications of preprocessing. The recon-all-clinical pipeline is promising, but requires further evaluation, especially when considered as an alternative to the classical pipeline. Key PointsO_LISurface deviations indicative of regional atrophy and hypertrophy were identified in people with idiopathic generalised epilepsy. C_LIO_LIPartial volume effects are likely to attenuate subtle morphometric abnormalities, increasing the likelihood of erroneous inference. C_LIO_LIPriors in synthetic image creation models may render them insensitive to subtle biomarkers. C_LIO_LIResampling and machine-learning based image synthesis are not currently replacements for research quality acquisitions in quantitative MRI research. C_LIO_LIThe results of studies using synthetic images should be interpreted in a separate context to those using untransformed data. C_LI

Equivariant Spatiotemporal Transformers with MDL-Guided Feature Selection for Malignancy Detection in Dynamic PET

Dadashkarimi, M.

medrxiv logopreprintAug 6 2025
Dynamic Positron Emission Tomography (PET) scans offer rich spatiotemporal data for detecting malignancies, but their high-dimensionality and noise pose significant challenges. We introduce a novel framework, the Equivariant Spatiotemporal Transformer with MDL-Guided Feature Selection (EST-MDL), which integrates group-theoretic symmetries, Kolmogorov complexity, and Minimum Description Length (MDL) principles. By enforcing spatial and temporal symmetries (e.g., translations and rotations) and leveraging MDL for robust feature selection, our model achieves improved generalization and interpretability. Evaluated on three realworld PET datasets--LUNG-PET, BRAIN-PET, and BREAST-PET--our approach achieves AUCs of 0.94, 0.92, and 0.95, respectively, outperforming CNNs, Vision Transformers (ViTs), and Graph Neural Networks (GNNs) in AUC, sensitivity, specificity, and computational efficiency. This framework offers a robust, interpretable solution for malignancy detection in clinical settings.

Delineating retinal breaks in ultra-widefield fundus images with a PraNet-based machine learning model

Takayama, T., Uto, T., Tsuge, T., Kondo, Y., Tampo, H., Chiba, M., Kaburaki, T., Yanagi, Y., Takahashi, H.

medrxiv logopreprintAug 5 2025
BackgroundRetinal breaks are critical lesions that can lead to retinal detachment and vision loss if not detected and treated early. Automated and precise delineation of retinal breaks using ultra- widefield fundus (UWF) images remain a significant challenge in ophthalmology. ObjectiveThis study aimed to develop and validate a deep learning model based on the PraNet architecture for the accurate delineation of retinal breaks in UWF images, with a particular focus on segmentation performance in retinal break-positive cases. MethodsWe developed a deep learning segmentation model based on the PraNet architecture. This study utilized a dataset consisting of 8,083 cases and a total of 34,867 UWF images. Of these, 960 images contained retinal breaks, while the remaining 33,907 images did not. The dataset was split into 34,713 images for training, 81 for validation, and 73 for testing. The model was trained and validated on this dataset. Model performance was evaluated using both image-wise segmentation metrics (accuracy, precision, recall, Intersection over Union (IoU), dice score, centroid distance score) and lesion-wise detection metrics (sensitivity, positive predictive value). ResultsThe PraNet-based model achieved an accuracy of 0.996, a precision of 0.635, a recall of 0.756, an IoU of 0.539, a dice score of 0.652, and a centroid distance score of 0.081 for pixel-level detection of retinal breaks. The lesion-wise sensitivity was calculated as 0.885, and the positive predictive value (PPV) was 0.742. ConclusionsTo our knowledge, this is the first study to present pixel-level localization of retinal breaks using deep learning on UWF images. Our findings demonstrate that the PraNet-based model provides precise and robust pixel-level segmentation of retinal breaks in UWF images. This approach offers a clinically applicable tool for the precise delineation of retinal breaks, with the potential to improve patient outcomes. Future work should focus on external validation across multiple institutions and integration of additional annotation strategies to further enhance model performance and generalizability.

BrainSignsNET: A Deep Learning Model for 3D Anatomical Landmark Detection in the Human Brain Imaging

shirzadeh barough, s., Ventura, C., Bilgel, M., Albert, M., Miller, M. I., Moghekar, A.

medrxiv logopreprintAug 5 2025
Accurate detection of anatomical landmarks in brain Magnetic Resonance Imaging (MRI) scans is essential for reliable spatial normalization, image alignment, and quantitative neuroimaging analyses. In this study, we introduce BrainSignsNET, a deep learning framework designed for robust three-dimensional (3D) landmark detection. Our approach leverages a multi-task 3D convolutional neural network that integrates an attention decoder branch with a multi-class decoder branch to generate precise 3D heatmaps, from which landmark coordinates are extracted. The model was trained and internally validated on T1-weighted Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) scans from the Alzheimers Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study of Aging (BLSA), and the Biomarkers of Cognitive Decline in Adults at Risk for AD (BIOCARD) datasets and externally validated on a clinical dataset from the Johns Hopkins Hydrocephalus Clinic. The study encompassed 14,472 scans from 6,299 participants, representing a diverse demographic profile with a significant proportion of older adult participants, particularly those over 70 years of age. Extensive preprocessing and data augmentation strategies, including traditional MRI corrections and tailored 3D transformations, ensured data consistency and improved model generalizability. Performance metrics demonstrated that on internal validation BrainSignsNET achieved an overall mean Euclidean distance of 2.32 {+/-} 0.41 mm and 94.8% of landmarks localized within their anatomically defined 3D volumes in the external validation dataset. This improvement in accurate anatomical landmark detection on brain MRI scans should benefit many imaging tasks, including registration, alignment, and quantitative analyses.
Page 1 of 12113 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.