Sort by:
Page 1 of 18 results

A systematic review of early neuroimaging and neurophysiological biomarkers for post-stroke mobility prognostication

Levy, C., Dalton, E. J., Ferris, J. K., Campbell, B. C. V., Brodtmann, A., Brauer, S., Churilov, L., Hayward, K. S.

medrxiv logopreprintSep 23 2025
BackgroundAccurate prognostication of mobility outcomes is essential to guide rehabilitation and manage patient expectations. The prognostic utility of neuroimaging and neurophysiological biomarkers remains uncertain when measured early post-stroke. This systematic review aimed to examine the prognostic capacity of early neuroimaging and neurophysiological biomarkers of mobility outcomes up to 24-months post-stroke. MethodsMEDLINE and EMBASE were searched from inception to June 2025. Cohort studies that reported neuroimaging or neurophysiological biomarkers measured [≤]14-days post-stroke and mobility outcome(s) assessed >14-days and [≤]24-months post-stroke were included. Biomarker analyses were classified by statistical analysis approach (association, discrimination/classification or validation). Magnitude of relevant statistical measures was used as the primary indicator of prognostic capacity. Risk of bias was assessed using the Quality in Prognostic Studies tool. Meta-analysis was not performed due to heterogeneity. ResultsTwenty reports from 18 independent study samples (n=2,160 participants) were included. Biomarkers were measured a median 7.5-days post-stroke, and outcomes were assessed between 1- and 12-months. Eighty-six biomarker analyses were identified (61 neuroimaging, 25 neurophysiological) and the majority used an association approach (88%). Few used discrimination/classification methods (11%), and only one conducted internal validation (1%); an MRI-based machine learning model which demonstrated excellent discrimination but still requires external validation. Structural and functional corticospinal tract integrity were frequently investigated, and most associations were small or non-significant. Lesion location and size were also commonly examined, but findings were inconsistent and often lacked magnitude reporting. Methodological limitations were common, including small sample sizes, moderate to high risk of bias, poor reporting of magnitudes, and heterogeneous outcome measures and follow-up time points. ConclusionsCurrent evidence provides limited support for early neuroimaging and neurophysiological biomarkers to prognosticate post-stroke mobility outcomes. Most analyses remain at the association stage, with minimal progress toward validation and clinical implementation. Advancing the field requires international collaboration using harmonized methodologies, standardised statistical reporting, and consistent outcome measures and timepoints. RegistrationURL: https://www.crd.york.ac.uk/prospero/; Unique identifier: CRD42022350771.

The African Breast Imaging Dataset for Equitable Cancer Care: Protocol for an Open Mammogram and Ultrasound Breast Cancer Detection Dataset

Musinguzi, D., Katumba, A., Kawooya, M. G., Malumba, R., Nakatumba-Nabende, J., Achuka, S. A., Adewole, M., Anazodo, U.

medrxiv logopreprintAug 28 2025
IntroductionBreast cancer is one of the most common cancers globally. Its incidence in Africa has increased sharply, surpassing that in high-income countries. Mortality remains high due to late-stage diagnosis, when treatment is less effetive. We propose the first open, longitudinal breast imaging dataset from Africa comprising point-of-care ultrasound scans, mammograms, biopsy pathology, and clinical profiles to support early detection using machine learning. Methods and AnalysisWe will engage women through community outreach and train them in self-examination. Those with suspected lesions, particularly with a family history of breast cancer, will be invited to participate. A total of 100 women will undergo baseline assessment at medical centers, including clinical exams, blood tests, and mammograms. Follow-up point-of-care ultrasound scans and clinical data will be collected at 3 and 6 months, with final assessments at 9 months including mammograms. Ethics and DisseminationThe study has been approved by the Institutional Review Boards at ECUREI and the MAI Lab. Findings will be disseminated through peer-reviewed journals and scientific conferences.

Toward Non-Invasive Voice Restoration: A Deep Learning Approach Using Real-Time MRI

Saleh, M. W.

medrxiv logopreprintAug 26 2025
Despite recent advances in brain-computer interfaces (BCIs) for speech restoration, existing systems remain invasive, costly, and inaccessible to individuals with congenital mutism or neurodegenerative disease. We present a proof-of-concept pipeline that synthesizes personalized speech directly from real-time magnetic resonance imaging (rtMRI) of the vocal tract, without requiring acoustic input. Segmented rtMRI frames are mapped to articulatory class representations using a Pix2Pix conditional GAN, which are then transformed into synthetic audio waveforms by a convolutional neural network modeling the articulatory-to-acoustic relationship. The outputs are rendered into audible form and evaluated with speaker-similarity metrics derived from Resemblyzer embeddings. While preliminary, our results suggest that even silent articulatory motion encodes sufficient information to approximate a speakers vocal characteristics, offering a non-invasive direction for future speech restoration in individuals who have lost or never developed voice.

A Systematic Review of Multimodal Deep Learning and Machine Learning Fusion Techniques for Prostate Cancer Classification

Manzoor, F., Gupta, V., Pinky, L., Wang, Z., Chen, Z., Deng, Y., Neupane, S.

medrxiv logopreprintAug 11 2025
Prostate cancer remains one of the most prevalent malignancies and a leading cause of cancer-related deaths among men worldwide. Despite advances in traditional diagnostic methods such as Prostate-specific antigen testing, digital rectal examination, and multiparametric Magnetic resonance imaging, these approaches remain constrained by modality-specific limitations, suboptimal sensitivity and specificity, and reliance on expert interpretation, which may introduce diagnostic inconsistency. Multimodal deep learning and machine learning fusion, which integrates diverse data sources including imaging, clinical, and molecular information, has emerged as a promising strategy to enhance the accuracy of prostate cancer classification. This review aims to outline the current state-of-the-art deep learning and machine learning based fusion techniques for prostate cancer classification, focusing on their implementation, performance, challenges, and clinical applicability. Following the PRISMA guidelines, a total of 131 studies were identified, of which 27 met the inclusion criteria for studies published between 2021 and 2025. Extracted data included input techniques, deep learning architectures, performance metrics, and validation approaches. The majority of the studies used an early fusion approach with convolutional neural networks to integrate the data. Clinical and imaging data were the most commonly used modalities in the reviewed studies for prostate cancer research. Overall, multimodal deep learning and machine learning-based fusion significantly advances prostate cancer classification and outperform unimodal approaches.

The Effectiveness of Large Language Models in Providing Automated Feedback in Medical Imaging Education: A Protocol for a Systematic Review

Al-Mashhadani, M., Ajaz, F., Guraya, S. S., Ennab, F.

medrxiv logopreprintAug 6 2025
BackgroundLarge Language Models (LLMs) represent an ever-emerging and rapidly evolving generative artificial intelligence (AI) modality with promising developments in the field of medical education. LLMs can provide automated feedback services to medical trainees (i.e. medical students, residents, fellows, etc.) and possibly serve a role in medical imaging education. AimThis systematic review aims to comprehensively explore the current applications and educational outcomes of LLMs in providing automated feedback on medical imaging reports. MethodsThis study employs a comprehensive systematic review strategy, involving an extensive search of the literature (Pubmed, Scopus, Embase, and Cochrane), data extraction, and synthesis of the data. ConclusionThis systematic review will highlight the best practices of LLM use in automated feedback of medical imaging reports and guide further development of these models.

ToolCAP: Novel Tools to improve management of paediatric Community-Acquired Pneumonia - a randomized controlled trial- Statistical Analysis Plan

Cicconi, S., Glass, T., Du Toit, J., Bresser, M., Dhalla, F., Faye, P. M., Lal, L., Langet, H., Manji, K., Moser, A., Ndao, M. A., Palmer, M., Tine, J. A. D., Van Hoving, N., Keitel, K.

medrxiv logopreprintJun 30 2025
The ToolCAP cohort study is a prospective, observational, multi-site platform study designed to collect harmonized, high-quality clinical, imaging, and biological data on children with IMCI-defined pneumonia in low- and middle-income countries (LMICs). The primary objective is to inform the development and validation of diagnostic and prognostic tools, including lung ultrasound (LUS), point-of-care biomarkers, and AI-based models, to improve pneumonia diagnosis, management, and antimicrobial stewardship. This statistical analysis plan (SAP) outlines the analytic strategy for describing the study population, assessing the performance of candidate diagnostic tools, and enabling data sharing in support of secondary research questions and AI model development. Children under 12 years presenting with suspected pneumonia are enrolled within 24 hours of presentation and undergo clinical assessment, digital auscultation, LUS, and optional biological sampling. Follow-up occurs on Day 8 and Day 29 to assess outcomes including recovery, treatment response, and complications. The SAP details variable definitions, data management strategies, and pre-specified analyses, including descriptive summaries, sensitivity and specificity of diagnostic tools against clinical reference standards, and exploratory subgroup analyses.

Artificial Intelligence for Early Detection and Prognosis Prediction of Diabetic Retinopathy

Budi Susilo, Y. K., Yuliana, D., Mahadi, M., Abdul Rahman, S., Ariffin, A. E.

medrxiv logopreprintJun 20 2025
This review explores the transformative role of artificial intelligence (AI) in the early detection and prognosis prediction of diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients. AI, particularly deep learning and convolutional neural networks (CNNs), has demonstrated remarkable accuracy in analyzing retinal images, identifying early-stage DR with high sensitivity and specificity. These advancements address critical challenges such as intergrader variability in manual screening and the limited availability of specialists, especially in underserved regions. The integration of AI with telemedicine has further enhanced accessibility, enabling remote screening through portable devices and smartphone-based imaging. Economically, AI-based systems reduce healthcare costs by optimizing resource allocation and minimizing unnecessary referrals. Key findings highlight the dominance of Medicine (819 documents) and Computer Science (613 documents) in research output, reflecting the interdisciplinary nature of this field. Geographically, China, the United States, and India lead in contributions, underscoring global efforts to combat DR. Despite these successes, challenges such as algorithmic bias, data privacy, and the need for explainable AI (XAI) remain. Future research should focus on multi-center validation, diverse AI methodologies, and clinician-friendly tools to ensure equitable adoption. By addressing these gaps, AI can revolutionize DR management, reducing the global burden of diabetes-related blindness through early intervention and scalable solutions.

Artificial Intelligence-Driven Innovations in Diabetes Care and Monitoring

Abdul Rahman, S., Mahadi, M., Yuliana, D., Budi Susilo, Y. K., Ariffin, A. E., Amgain, K.

medrxiv logopreprintJun 2 2025
This study explores Artificial Intelligence (AI)s transformative role in diabetes care and monitoring, focusing on innovations that optimize patient outcomes. AI, particularly machine learning and deep learning, significantly enhances early detection of complications like diabetic retinopathy and improves screening efficacy. The methodology employs a bibliometric analysis using Scopus, VOSviewer, and Publish or Perish, analyzing 235 articles from 2023-2025. Results indicate a strong interdisciplinary focus, with Computer Science and Medicine being dominant subject areas (36.9% and 12.9% respectively). Bibliographic coupling reveals robust international collaborations led by the U.S. (1558.52 link strength), UK, and China, with key influential documents by Zhu (2023c) and Annuzzi (2023). This research highlights AIs impact on enhancing monitoring, personalized treatment, and proactive care, while acknowledging challenges in data privacy and ethical deployment. Future work should bridge technological advancements with real-world implementation to create equitable and efficient diabetes care systems.
Page 1 of 18 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.