Sort by:
Page 1 of 14 results

Slide-free surface histology enables rapid colonic polyp interpretation across specialties and foundation AI

Yong, A., Husna, N., Tan, K. H., Manek, G., Sim, R., Loi, R., Lee, O., Tang, S., Soon, G., Chan, D., Liang, K.

medrxiv logopreprintJun 11 2025
Colonoscopy is a mainstay of colorectal cancer screening and has helped to lower cancer incidence and mortality. The resection of polyps during colonoscopy is critical for tissue diagnosis and prevention of colorectal cancer, albeit resulting in increased resource requirements and expense. Discarding resected benign polyps without sending for histopathological processing and confirmatory diagnosis, known as the resect and discard strategy, could enhance efficiency but is not commonly practiced due to endoscopists predominant preference for pathological confirmation. The inaccessibility of histopathology from unprocessed resected tissue hampers endoscopic decisions. We show that intraprocedural fibre-optic microscopy with ultraviolet-C surface excitation (FUSE) of polyps post-resection enables rapid diagnosis, potentially complementing endoscopic interpretation and incorporating pathologist oversight. In a clinical study of 28 patients, slide-free FUSE microscopy of freshly resected polyps yielded mucosal views that greatly magnified the surface patterns observed on endoscopy and revealed previously unavailable histopathological signatures. We term this new cross-specialty readout surface histology. In blinded interpretations of 42 polyps (19 training, 23 reading) by endoscopists and pathologists of varying experience, surface histology differentiated normal/benign, low-grade dysplasia, and high-grade dysplasia and cancer, with 100% performance in classifying high/low risk. This FUSE dataset was also successfully interpreted by foundation AI models pretrained on histopathology slides, illustrating a new potential for these models to not only expedite conventional pathology tasks but also autonomously provide instant expert feedback during procedures that typically lack pathologists. Surface histology readouts during colonoscopy promise to empower endoscopist decisions and broadly enhance confidence and participation in resect and discard. One Sentence SummaryRapid microscopy of resected polyps during colonoscopy yielded accurate diagnoses, promising to enhance colorectal screening.

Deep learning-enabled MRI phenotyping uncovers regional body composition heterogeneity and disease associations in two European population cohorts

Mertens, C. J., Haentze, H., Ziegelmayer, S., Kather, J. N., Truhn, D., Kim, S. H., Busch, F., Weller, D., Wiestler, B., Graf, M., Bamberg, F., Schlett, C. L., Weiss, J. B., Ringhof, S., Can, E., Schulz-Menger, J., Niendorf, T., Lammert, J., Molwitz, I., Kader, A., Hering, A., Meddeb, A., Nawabi, J., Schulze, M. B., Keil, T., Willich, S. N., Krist, L., Hadamitzky, M., Hannemann, A., Bassermann, F., Rueckert, D., Pischon, T., Hapfelmeier, A., Makowski, M. R., Bressem, K. K., Adams, L. C.

medrxiv logopreprintJun 6 2025
Body mass index (BMI) does not account for substantial inter-individual differences in regional fat and muscle compartments, which are relevant for the prevalence of cardiometabolic and cancer conditions. We applied a validated deep learning pipeline for automated segmentation of whole-body MRI scans in 45,851 adults from the UK Biobank and German National Cohort, enabling harmonized quantification of visceral (VAT), gluteofemoral (GFAT), and abdominal subcutaneous adipose tissue (ASAT), liver fat fraction (LFF), and trunk muscle volume. Associations with clinical conditions were evaluated using compartment measures adjusted for age, sex, height, and BMI. Our analysis demonstrates that regional adiposity and muscle volume show distinct associations with cardiometabolic and cancer prevalence, and that substantial disease heterogeneity exists within BMI strata. The analytic framework and reference data presented here will support future risk stratification efforts and facilitate the integration of automated MRI phenotyping into large-scale population and clinical research.

Physician-level classification performance across multiple imaging domains with a diagnostic medical foundation model and a large dataset of annotated medical images

Thieme, A. H., Miri, T., Marra, A. R., Kobayashi, T., Rodriguez-Nava, G., Li, Y., Barba, T., Er, A. G., Benzler, J., Gertler, M., Riechers, M., Hinze, C., Zheng, Y., Pelz, K., Nagaraj, D., Chen, A., Loeser, A., Ruehle, A., Zamboglou, C., Alyahya, L., Uhlig, M., Machiraju, G., Weimann, K., Lippert, C., Conrad, T., Ma, J., Novoa, R., Moor, M., Hernandez-Boussard, T., Alawad, M., Salinas, J. L., Mittermaier, M., Gevaert, O.

medrxiv logopreprintMay 31 2025
A diagnostic medical foundation model (MedFM) is an artificial intelligence (AI) system engineered to accurately determine diagnoses across various medical imaging modalities and specialties. To train MedFM, we created the PubMed Central Medical Images Dataset (PMCMID), the largest annotated medical image dataset to date, comprising 16,126,659 images from 3,021,780 medical publications. Using AI- and ontology-based methods, we identified 4,482,237 medical images (e.g., clinical photos, X-rays, ultrasounds) and generated comprehensive annotations. To optimize MedFMs performance and assess biases, 13,266 images were manually annotated to establish a multimodal benchmark. MedFM achieved physician-level performance in diagnosis tasks spanning radiology, dermatology, and infectious diseases without requiring specific training. Additionally, we developed the Image2Paper app, allowing clinicians to upload medical images and retrieve relevant literature. The correct diagnoses appeared within the top ten results in 88.4% and at least one relevant differential diagnosis in 93.0%. MedFM and PMCMID were made publicly available. FundingResearch reported here was partially supported by the National Cancer Institute (NCI) (R01 CA260271), the Saudi Company for Artificial Intelligence (SCAI) Authority, and the German Federal Ministry for Economic Affairs and Climate Action (BMWK) under the project DAKI-FWS (01MK21009E). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Creation of an Open-Access Lung Ultrasound Image Database For Deep Learning and Neural Network Applications

Kumar, A., Nandakishore, P., Gordon, A. J., Baum, E., Madhok, J., Duanmu, Y., Kugler, J.

medrxiv logopreprintMay 11 2025
BackgroundLung ultrasound (LUS) offers advantages over traditional imaging for diagnosing pulmonary conditions, with superior accuracy compared to chest X-ray and similar performance to CT at lower cost. Despite these benefits, widespread adoption is limited by operator dependency, moderate interrater reliability, and training requirements. Deep learning (DL) could potentially address these challenges, but development of effective algorithms is hindered by the scarcity of comprehensive image repositories with proper metadata. MethodsWe created an open-source dataset of LUS images derived a multi-center study involving N=226 adult patients presenting with respiratory symptoms to emergency departments between March 2020 and April 2022. Images were acquired using a standardized scanning protocol (12-zone or modified 8-zone) with various point-of-care ultrasound devices. Three blinded researchers independently analyzed each image following consensus guidelines, with disagreements adjudicated to provide definitive interpretations. Videos were pre-processed to remove identifiers, and frames were extracted and resized to 128x128 pixels. ResultsThe dataset contains 1,874 video clips comprising 303,977 frames. Half of the participants (50%) had COVID-19 pneumonia. Among all clips, 66% contained no abnormalities, 18% contained B-lines, 4.5% contained consolidations, 6.4% contained both B-lines and consolidations, and 5.2% had indeterminate findings. Pathological findings varied significantly by lung zone, with anterior zones more frequently normal and less likely to show consolidations compared to lateral and posterior zones. DiscussionThis dataset represents one of the largest annotated LUS repositories to date, including both COVID-19 and non-COVID-19 patients. The comprehensive metadata and expert interpretations enhance its utility for DL applications. Despite limitations including potential device-specific characteristics and COVID-19 predominance, this repository provides a valuable resource for developing AI tools to improve LUS acquisition and interpretation.
Page 1 of 14 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.