Sort by:
Page 1 of 212 results
Next

Normative Modelling of Brain Volume for Diagnostic and Prognostic Stratification in Multiple Sclerosis

Korbmacher, M., Lie, I. A., Wesnes, K., Westman, E., Espeseth, T., Andreassen, O., Westlye, L., Wergeland, S., Harbo, H. F., Nygaard, G. O., Myhr, K.-M., Hogestol, E. A., Torkildsen, O.

medrxiv logopreprintSep 15 2025
BackgroundBrain atrophy is a hallmark of multiple sclerosis (MS). For clinical translatability and individual-level predictions, brain atrophy needs to be put into context of the broader population, using reference or normative models. MethodsReference models of MRI-derived brain volumes were established from a large healthy control (HC) multi-cohort dataset (N=63 115, 51% females). The reference models were applied to two independent MS cohorts (N=362, T1w-scans=953, follow-up time up to 12 years) to assess deviations from the reference, defined as Z-values. We assessed the overlap of deviation profiles and their stability over time using individual-level transitions towards or out of significant reference deviation states (|Z|>1{middle dot}96). A negative binomial model was used for case-control comparisons of the number of extreme deviations. Linear models were used to assess differences in Z-score deviations between MS and propensity-matched HCs, and associations with clinical scores at baseline and over time. The utilized normative BrainReference models, scripts and usage instructions are freely available. FindingsWe identified a temporally stable, brain morphometric phenotype of MS. The right and left thalami most consistently showed significantly lower-than-reference volumes in MS (25% and 26% overlap across the sample). The number of such extreme smaller-than-reference values was 2{middle dot}70 in MS compared to HC (4{middle dot}51 versus 1{middle dot}67). Additional deviations indicated stronger disability (Expanded Disability Status Scale: {beta}=0{middle dot}22, 95% CI 0{middle dot}12 to 0{middle dot}32), Paced Auditory Serial Addition Test score ({beta}=-0{middle dot}27, 95% CI -0{middle dot}52 to -0{middle dot}02), and Fatigue Severity Score ({beta}=0{middle dot}29, 95% CI 0{middle dot}05 to 0{middle dot}53) at baseline, and over time with EDSS ({beta}=0{middle dot}07, 95% CI 0{middle dot}02 to 0{middle dot}13). We additionally provide detailed maps of reference-deviations and their associations with clinical assessments. InterpretationWe present a heterogenous brain phenotype of MS which is associated with clinical manifestations, and particularly implicating the thalamus. The findings offer potential to aid diagnosis and prognosis of MS. FundingNorwegian MS-union, Research Council of Norway (#223273; #324252); the South-Eastern Norway Regional Health Authority (#2022080); and the European Unions Horizon2020 Research and Innovation Programme (#847776, #802998). Research in contextO_ST_ABSEvidence before this studyC_ST_ABSReference values and normative models have yet to be widely applied to neuroimaging assessments of neurological disorders such as multiple sclerosis (MS). We conducted a literature search in PubMed and Embase (Jan 1, 2000-September 12, 2025) using the terms "MRI" AND "multiple sclerosis", with and without the keywords "normative model*" and "atrophy", without language restrictions. While normative models have been applied in psychiatric and developmental disorders, few studies have addressed their use in neurological conditions. Existing MS research has largely focused on global atrophy and has not provided regional reference charts or established links to clinical and cognitive outcomes. Added value of this studyWe provide regionally detailed brain morphometry maps derived from a heterogeneous MS cohort spanning wide ranges of age, sex, clinical phenotype, disease duration, disability, and scanner characteristics. By leveraging normative modelling, our approach enables individualised brain phenotyping of MS in relation to a population based normative sample. The analyses reveal clinically meaningful and spatially consistent patterns of smaller brain volumes, particularly in the thalamus and frontal cortical regions, which are linked to disability, cognitive impairment, and fatigue. Robustness across scanners, centres, and longitudinal follow-up supports the stability and generalisability of these findings to real-world MS populations. Implications of all the available evidenceNormative modelling offers an individualised, sensitive, and interpretable approach to quantifying brain structure in MS by providing individual-specific reference values, supporting earlier detection of neurodegeneration and improved patient stratification. A consistent pattern of thalamic and fronto-parietal deviations defines a distinct morphometric profile of MS, with potential utility for early and personalised diagnosis and disease monitoring in clinical practice and clinical trials.

Deep learning-based precision phenotyping of spine curvature identifies novel genetic risk loci for scoliosis in the UK Biobank

Zeosk, M., Kun, E., Reddy, S., Pandey, D., Xu, L., Wang, J. Y., Li, C., Gray, R. S., Wise, C. A., Otomo, N., Narasimhan, V. M.

medrxiv logopreprintSep 5 2025
Scoliosis is the most common developmental spinal deformity, but its genetic underpinnings remain only partially understood. To enhance the identification of scoliosis-related loci, we utilized whole body dual energy X-ray absorptiometry (DXA) scans from 57,887 individuals in the UK Biobank (UKB), and quantified spine curvature by applying deep learning models to segment then landmark vertebrae to measure the cumulative horizontal displacement of the spine from a central axis. On a subset of 120 individuals, our automated image-derived curvature measurements showed a correlation 0.92 with clinical Cobb angle assessments, supporting their validity as a proxy for scoliosis severity. To connect spinal curvature with its genetic basis we conducted a genome-wide association study (GWAS). Our quantitative imaging phenotype allowed us to identify 2 novel loci associated with scoliosis in a European population not seen in previous GWAS. These loci are in the gene SEM1/SHFM1 as well as on a lncRNA on chr 3 that is downstream of EDEM1 and upstream of GRM7. Genetic correlation analysis revealed significant overlap between our image-based GWAS and ICD-10 based GWAS in both the UKB and Biobank of Japan. We also showed that our quantitative GWAS had more statistical power to identify new loci than a case-control dataset with an order of magnitude larger sample size. Increased spine curvature was also associated with increased leg length discrepancy, reduced muscle strength and decreased bone density, and increased incidence of knee but not hip osteoarthritis. Our results illustrate the potential of using quantitative imaging phenotypes to uncover genetic associations that are challenging to capture with medical records alone and identify new loci for functional follow-up.

Automated Deep Learning-Based Detection of Early Atherosclerotic Plaques in Carotid Ultrasound Imaging

Omarov, M., Zhang, L., Doroodgar Jorshery, S., Malik, R., Das, B., Bellomo, T. R., Mansmann, U., Menten, M. J., Natarajan, P., Dichgans, M., Kalic, M., Raghu, V. K., Berger, K., Anderson, C. D., Georgakis, M. K.

medrxiv logopreprintSep 3 2025
BackgroundCarotid plaque presence is associated with cardiovascular risk, even among asymptomatic individuals. While deep learning has shown promise for carotid plaque phenotyping in patients with advanced atherosclerosis, its application in population-based settings of asymptomatic individuals remains unexplored. MethodsWe developed a YOLOv8-based model for plaque detection using carotid ultrasound images from 19,499 participants of the population-based UK Biobank (UKB) and fine-tuned it for external validation in the BiDirect study (N = 2,105). Cox regression was used to estimate the impact of plaque presence and count on major cardiovascular events. To explore the genetic architecture of carotid atherosclerosis, we conducted a genome-wide association study (GWAS) meta-analysis of the UKB and CHARGE cohorts. Mendelian randomization (MR) assessed the effect of genetic predisposition to vascular risk factors on carotid atherosclerosis. ResultsOur model demonstrated high performance with accuracy, sensitivity, and specificity exceeding 85%, enabling identification of carotid plaques in 45% of the UKB population (aged 47-83 years). In the external BiDirect cohort, a fine-tuned model achieved 86% accuracy, 78% sensitivity, and 90% specificity. Plaque presence and count were associated with risk of major adverse cardiovascular events (MACE) over a follow-up of up to seven years, improving risk reclassification beyond the Pooled Cohort Equations. A GWAS meta-analysis of carotid plaques uncovered two novel genomic loci, with downstream analyses implicating targets of investigational drugs in advanced clinical development. Observational and MR analyses showed associations between smoking, LDL cholesterol, hypertension, and odds of carotid atherosclerosis. ConclusionsOur model offers a scalable solution for early carotid plaque detection, potentially enabling automated screening in asymptomatic individuals and improving plaque phenotyping in population-based cohorts. This approach could advance large-scale atherosclerosis research. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=131 SRC="FIGDIR/small/24315675v2_ufig1.gif" ALT="Figure 1"> View larger version (33K): [email protected]@27a04corg.highwire.dtl.DTLVardef@18cef18org.highwire.dtl.DTLVardef@1a53d8f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGRAPHICAL ABSTRACT.C_FLOATNO ASCVD - Atherosclerotic Cardiovascular Disease, CVD - Cardiovascular disease, PCE - Pooled Cohort Equations, TP- true positive, FN - False Negative, FP - False Positive, TN - True Negative, GWAS - Genome-Wide Association Study. C_FIG CLINICAL PERSPECTIVECarotid ultrasound is a well-established method for assessing subclinical atherosclerosis with potential to improve cardiovascular risk assessment in asymptomatic individuals. Deep learning could automate plaque screening and enable processing of large imaging datasets, reducing the need for manual annotation. Integrating such large-scale carotid ultrasound datasets with clinical, genetic, and other relevant data can advance cardiovascular research. Prior studies applying deep learning to carotid ultrasound have focused on technical tasks-plaque classification, segmentation, and characterization-in small sample sizes of patients with advanced atherosclerosis. However, they did not assess the potential of deep learning in detecting plaques in asymptomatic individuals at the population level. We developed an efficient deep learning model for the automated detection and quantification of early carotid plaques in ultrasound imaging, primarily in asymptomatic individuals. The model demonstrated high accuracy and external validity across population-based cohort studies. Predicted plaque prevalence aligned with known cardiovascular risk factors. Importantly, predicted plaque presence and count were associated with future cardiovascular events and improved reclassification of asymptomatic individuals into clinically meaningful risk categories. Integrating our model predictions with genetic data identified two novel loci associated with carotid plaque presence--both previously linked to cardiovascular disease--highlighting the models potential for population-scale atherosclerosis research. Our model provides a scalable solution for automated carotid plaque phenotyping in ultrasound images at the population level. These findings support its use for automated screening in asymptomatic individuals and for streamlining plaque phenotyping in large cohorts, thereby advancing research on subclinical atherosclerosis in the general population.

Decoding Fibrosis: Transcriptomic and Clinical Insights via AI-Derived Collagen Deposition Phenotypes in MASLD

Wojciechowska, M. K., Thing, M., Hu, Y., Mazzoni, G., Harder, L. M., Werge, M. P., Kimer, N., Das, V., Moreno Martinez, J., Prada-Medina, C. A., Vyberg, M., Goldin, R., Serizawa, R., Tomlinson, J., Douglas Gaalsgard, E., Woodcock, D. J., Hvid, H., Pfister, D. R., Jurtz, V. I., Gluud, L.-L., Rittscher, J.

medrxiv logopreprintSep 2 2025
Histological assessment is foundational to multi-omics studies of liver disease, yet conventional fibrosis staging lacks resolution, and quantitative metrics like collagen proportionate area (CPA) fail to capture tissue architecture. While recent AI-driven approaches offer improved precision, they are proprietary and not accessible to academic research. Here, we present a novel, interpretable AI-based framework for characterising liver fibrosis from picrosirius red (PSR)-stained slides. By identifying distinct data-driven collagen deposition phenotypes (CDPs) which capture distinct morphologies, our method substantially improves the sensitivity and specificity of downstream transcriptomic and proteomic analyses compared to CPA and traditional fibrosis scores. Pathway analysis reveals that CDPs 4 and 5 are associated with active extracellular matrix remodelling, while phenotype correlates highlight links to liver functional status. Importantly, we demonstrate that selected CDPs can predict clinical outcomes with similar accuracy to established fibrosis metrics. All models and tools are made freely available to support transparent and reproducible multi-omics pathology research. HighlightsO_LIWe present a set of data-driven collagen deposition phenotypes for analysing PSR-stained liver biopsies, offering a spatially informed alternative to conventional fibrosis staging and CPA available as open-source code. C_LIO_LIThe identified collagen deposition phenotypes enhance transcriptomic and proteomic signal detection, revealing active ECM remodelling and distinct functional tissue states. C_LIO_LISelected phenotypes predict clinical outcomes with performance comparable to fibrosis stage and CPA, highlighting their potential as candidate quantitative indicators of fibrosis severity. C_LI O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=98 SRC="FIGDIR/small/25334719v1_ufig1.gif" ALT="Figure 1"> View larger version (22K): [email protected]@1793532org.highwire.dtl.DTLVardef@93a0d8org.highwire.dtl.DTLVardef@24d289_HPS_FORMAT_FIGEXP M_FIG C_FIG

The African Breast Imaging Dataset for Equitable Cancer Care: Protocol for an Open Mammogram and Ultrasound Breast Cancer Detection Dataset

Musinguzi, D., Katumba, A., Kawooya, M. G., Malumba, R., Nakatumba-Nabende, J., Achuka, S. A., Adewole, M., Anazodo, U.

medrxiv logopreprintAug 28 2025
IntroductionBreast cancer is one of the most common cancers globally. Its incidence in Africa has increased sharply, surpassing that in high-income countries. Mortality remains high due to late-stage diagnosis, when treatment is less effetive. We propose the first open, longitudinal breast imaging dataset from Africa comprising point-of-care ultrasound scans, mammograms, biopsy pathology, and clinical profiles to support early detection using machine learning. Methods and AnalysisWe will engage women through community outreach and train them in self-examination. Those with suspected lesions, particularly with a family history of breast cancer, will be invited to participate. A total of 100 women will undergo baseline assessment at medical centers, including clinical exams, blood tests, and mammograms. Follow-up point-of-care ultrasound scans and clinical data will be collected at 3 and 6 months, with final assessments at 9 months including mammograms. Ethics and DisseminationThe study has been approved by the Institutional Review Boards at ECUREI and the MAI Lab. Findings will be disseminated through peer-reviewed journals and scientific conferences.

SibBMS: Siberian Brain Multiple Sclerosis Dataset with lesion segmentation and patient meta information

Tuchinov, B., Prokaeva, A., Vasilkiv, L., Stankevich, Y., Korobko, D., Malkova, N., Tulupov, A.

medrxiv logopreprintAug 16 2025
Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disorder of the central nervous system (CNS) and represents the leading cause of non-traumatic disability among young adults. Magnetic resonance imaging (MRI) has revolutionized both the clinical management and scientific understanding of MS, serving as an indispensable paraclinical tool. Its high sensitivity and diagnostic accuracy enable early detection and timely therapeutic intervention, significantly impacting patient outcomes. Recent technological advancements have facilitated the integration of artificial intelligence (AI) algorithms for automated lesion identification, segmentation, and longitudinal monitoring. The ongoing refinement of deep learning (DL) and machine learning (ML) techniques, alongside their incorporation into clinical workflows, holds great promise for improving healthcare accessibility and quality in MS management. Despite the encouraging performance of DL models in MS lesion segmentation and disease progression tracking, their effectiveness is frequently constrained by the scarcity of large, diverse, and publicly available datasets. Open-source initiatives such as MSLesSeg, MS-Baghdad, MS-Shift, and MSSEG-2 have provided valuable contributions to the research community. Building upon these foundations, we introduce the SibBMS dataset to further advance data-driven research in MS. In this study, we present the SibBMS dataset, a carefully curated, open-source resource designed to support MS research utilizing structural brain MRI. The dataset comprises imaging data from 93 patients diagnosed with MS or radiologically isolated syndrome (RIS), alongside 100 healthy controls. All lesion annotations were manually delineated and rigorously reviewed by a three-tier panel of experienced neuroradiologists to ensure clinical relevance and segmentation accuracy. Additionally, the dataset includes comprehensive demographic metadata--such as age, sex, and disease duration--enabling robust stratified analyses and facilitating the development of more generalizable predictive models. Our dataset is available via a request-access form at https://forms.gle/VqTenJ4n8S8qvtxQA.

AI-Powered Segmentation and Prognosis with Missing MRI in Pediatric Brain Tumors

Chrysochoou, D., Gandhi, D., Adib, S., Familiar, A., Khalili, N., Khalili, N., Ware, J. B., Tu, W., Jain, P., Anderson, H., Haldar, S., Storm, P. B., Franson, A., Prados, M., Kline, C., Mueller, S., Resnick, A., Vossough, A., Davatzikos, C., Nabavizadeh, A., Fathi Kazerooni, A.

medrxiv logopreprintJul 16 2025
ImportanceBrain MRI is the main imaging modality for pediatric brain tumors (PBTs); however, incomplete MRI exams are common in pediatric neuro-oncology settings and pose a barrier to the development and application of deep learning (DL) models, such as tumor segmentation and prognostic risk estimation. ObjectiveTo evaluate DL-based strategies (image-dropout training and generative image synthesis) and heuristic imputation approaches for handling missing MRI sequences in PBT imaging from clinical acquisition protocols, and to determine their impact on segmentation accuracy and prognostic risk estimation. DesignThis cohort study included 715 patients from the Childrens Brain Tumor Network (CBTN) and BraTS-PEDs, and 43 patients with longitudinal MRI (157 timepoints) from PNOC003/007 clinical trials. We developed a dropout-trained nnU-Net tumor segmentation model that randomly omitted FLAIR and/or T1w (no contrast) sequences during training to simulate missing inputs. We compared this against three imputation approaches: a generative model for image synthesis, copy-substitution heuristics, and zeroed missing inputs. Model-generated tumor volumes from each segmentation method were compared and evaluated against ground truth (expert manual segmentations) and incorporated into time-varying Cox regression models for survival analysis. SettingMulti-institutional PBT datasets and longitudinal clinical trial cohorts. ParticipantsAll patients had multi-parametric MRI and expert manual segmentations. The PNOC cohort had a median of three imaging timepoints and associated clinical data. Main Outcomes and MeasuresSegmentation accuracy (Dice scores), image quality metrics for synthesized scans (SSIM, PSNR, MSE), and survival discrimination (C-index, hazard ratios). ResultsThe dropout model achieved robust segmentation under missing MRI, with [≤]0.04 Dice drop and a stable C-index of 0.65 compared to complete-input performance. DL-based MRI synthesis achieved high image quality (SSIM > 0.90) and removed artifacts, benefiting visual interpretability. Performance was consistent across cohorts and missing data scenarios. Conclusion and RelevanceModality-dropout training yields robust segmentation and risk-stratification on incomplete pediatric MRI without the computational and clinical complexity of synthesis approaches. Image synthesis, though less effective for these tasks, provides complementary benefits for artifact removal and qualitative assessment of missing or corrupted MRI scans. Together, these approaches can facilitate broader deployment of AI tools in real-world pediatric neuro-oncology settings.

ToolCAP: Novel Tools to improve management of paediatric Community-Acquired Pneumonia - a randomized controlled trial- Statistical Analysis Plan

Cicconi, S., Glass, T., Du Toit, J., Bresser, M., Dhalla, F., Faye, P. M., Lal, L., Langet, H., Manji, K., Moser, A., Ndao, M. A., Palmer, M., Tine, J. A. D., Van Hoving, N., Keitel, K.

medrxiv logopreprintJun 30 2025
The ToolCAP cohort study is a prospective, observational, multi-site platform study designed to collect harmonized, high-quality clinical, imaging, and biological data on children with IMCI-defined pneumonia in low- and middle-income countries (LMICs). The primary objective is to inform the development and validation of diagnostic and prognostic tools, including lung ultrasound (LUS), point-of-care biomarkers, and AI-based models, to improve pneumonia diagnosis, management, and antimicrobial stewardship. This statistical analysis plan (SAP) outlines the analytic strategy for describing the study population, assessing the performance of candidate diagnostic tools, and enabling data sharing in support of secondary research questions and AI model development. Children under 12 years presenting with suspected pneumonia are enrolled within 24 hours of presentation and undergo clinical assessment, digital auscultation, LUS, and optional biological sampling. Follow-up occurs on Day 8 and Day 29 to assess outcomes including recovery, treatment response, and complications. The SAP details variable definitions, data management strategies, and pre-specified analyses, including descriptive summaries, sensitivity and specificity of diagnostic tools against clinical reference standards, and exploratory subgroup analyses.

Slide-free surface histology enables rapid colonic polyp interpretation across specialties and foundation AI

Yong, A., Husna, N., Tan, K. H., Manek, G., Sim, R., Loi, R., Lee, O., Tang, S., Soon, G., Chan, D., Liang, K.

medrxiv logopreprintJun 11 2025
Colonoscopy is a mainstay of colorectal cancer screening and has helped to lower cancer incidence and mortality. The resection of polyps during colonoscopy is critical for tissue diagnosis and prevention of colorectal cancer, albeit resulting in increased resource requirements and expense. Discarding resected benign polyps without sending for histopathological processing and confirmatory diagnosis, known as the resect and discard strategy, could enhance efficiency but is not commonly practiced due to endoscopists predominant preference for pathological confirmation. The inaccessibility of histopathology from unprocessed resected tissue hampers endoscopic decisions. We show that intraprocedural fibre-optic microscopy with ultraviolet-C surface excitation (FUSE) of polyps post-resection enables rapid diagnosis, potentially complementing endoscopic interpretation and incorporating pathologist oversight. In a clinical study of 28 patients, slide-free FUSE microscopy of freshly resected polyps yielded mucosal views that greatly magnified the surface patterns observed on endoscopy and revealed previously unavailable histopathological signatures. We term this new cross-specialty readout surface histology. In blinded interpretations of 42 polyps (19 training, 23 reading) by endoscopists and pathologists of varying experience, surface histology differentiated normal/benign, low-grade dysplasia, and high-grade dysplasia and cancer, with 100% performance in classifying high/low risk. This FUSE dataset was also successfully interpreted by foundation AI models pretrained on histopathology slides, illustrating a new potential for these models to not only expedite conventional pathology tasks but also autonomously provide instant expert feedback during procedures that typically lack pathologists. Surface histology readouts during colonoscopy promise to empower endoscopist decisions and broadly enhance confidence and participation in resect and discard. One Sentence SummaryRapid microscopy of resected polyps during colonoscopy yielded accurate diagnoses, promising to enhance colorectal screening.

Deep learning-enabled MRI phenotyping uncovers regional body composition heterogeneity and disease associations in two European population cohorts

Mertens, C. J., Haentze, H., Ziegelmayer, S., Kather, J. N., Truhn, D., Kim, S. H., Busch, F., Weller, D., Wiestler, B., Graf, M., Bamberg, F., Schlett, C. L., Weiss, J. B., Ringhof, S., Can, E., Schulz-Menger, J., Niendorf, T., Lammert, J., Molwitz, I., Kader, A., Hering, A., Meddeb, A., Nawabi, J., Schulze, M. B., Keil, T., Willich, S. N., Krist, L., Hadamitzky, M., Hannemann, A., Bassermann, F., Rueckert, D., Pischon, T., Hapfelmeier, A., Makowski, M. R., Bressem, K. K., Adams, L. C.

medrxiv logopreprintJun 6 2025
Body mass index (BMI) does not account for substantial inter-individual differences in regional fat and muscle compartments, which are relevant for the prevalence of cardiometabolic and cancer conditions. We applied a validated deep learning pipeline for automated segmentation of whole-body MRI scans in 45,851 adults from the UK Biobank and German National Cohort, enabling harmonized quantification of visceral (VAT), gluteofemoral (GFAT), and abdominal subcutaneous adipose tissue (ASAT), liver fat fraction (LFF), and trunk muscle volume. Associations with clinical conditions were evaluated using compartment measures adjusted for age, sex, height, and BMI. Our analysis demonstrates that regional adiposity and muscle volume show distinct associations with cardiometabolic and cancer prevalence, and that substantial disease heterogeneity exists within BMI strata. The analytic framework and reference data presented here will support future risk stratification efforts and facilitate the integration of automated MRI phenotyping into large-scale population and clinical research.
Page 1 of 212 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.