Sort by:
Page 1 of 15 results

Artificial Intelligence for Early Detection and Prognosis Prediction of Diabetic Retinopathy

Budi Susilo, Y. K., Yuliana, D., Mahadi, M., Abdul Rahman, S., Ariffin, A. E.

medrxiv logopreprintJun 20 2025
This review explores the transformative role of artificial intelligence (AI) in the early detection and prognosis prediction of diabetic retinopathy (DR), a leading cause of vision loss in diabetic patients. AI, particularly deep learning and convolutional neural networks (CNNs), has demonstrated remarkable accuracy in analyzing retinal images, identifying early-stage DR with high sensitivity and specificity. These advancements address critical challenges such as intergrader variability in manual screening and the limited availability of specialists, especially in underserved regions. The integration of AI with telemedicine has further enhanced accessibility, enabling remote screening through portable devices and smartphone-based imaging. Economically, AI-based systems reduce healthcare costs by optimizing resource allocation and minimizing unnecessary referrals. Key findings highlight the dominance of Medicine (819 documents) and Computer Science (613 documents) in research output, reflecting the interdisciplinary nature of this field. Geographically, China, the United States, and India lead in contributions, underscoring global efforts to combat DR. Despite these successes, challenges such as algorithmic bias, data privacy, and the need for explainable AI (XAI) remain. Future research should focus on multi-center validation, diverse AI methodologies, and clinician-friendly tools to ensure equitable adoption. By addressing these gaps, AI can revolutionize DR management, reducing the global burden of diabetes-related blindness through early intervention and scalable solutions.

Radiologist-AI workflow can be modified to reduce the risk of medical malpractice claims

Bernstein, M., Sheppard, B., Bruno, M. A., Lay, P. S., Baird, G. L.

medrxiv logopreprintJun 16 2025
BackgroundArtificial Intelligence (AI) is rapidly changing the legal landscape of radiology. Results from a previous experiment suggested that providing AI error rates can reduce perceived radiologist culpability, as judged by mock jury members (4). The current study advances this work by examining whether the radiologists behavior also impacts perceptions of liability. Methods. Participants (n=282) read about a hypothetical malpractice case where a 50-year-old who visited the Emergency Department with acute neurological symptoms received a brain CT scan to determine if bleeding was present. An AI system was used by the radiologist who interpreted imaging. The AI system correctly flagged the case as abnormal. Nonetheless, the radiologist concluded no evidence of bleeding, and the blood-thinner t-PA was administered. Participants were randomly assigned to either a 1.) single-read condition, where the radiologist interpreted the CT once after seeing AI feedback, or 2.) a double-read condition, where the radiologist interpreted the CT twice, first without AI and then with AI feedback. Participants were then told the patient suffered irreversible brain damage due to the missed brain bleed, resulting in the patient (plaintiff) suing the radiologist (defendant). Participants indicated whether the radiologist met their duty of care to the patient (yes/no). Results. Hypothetical jurors were more likely to side with the plaintiff in the single-read condition (106/142, 74.7%) than in the double-read condition (74/140, 52.9%), p=0.0002. Conclusion. This suggests that the penalty for disagreeing with correct AI can be mitigated when images are interpreted twice, or at least if a radiologist gives an interpretation before AI is used.

Lack of children in public medical imaging data points to growing age bias in biomedical AI

Hua, S. B. Z., Heller, N., He, P., Towbin, A. J., Chen, I., Lu, A., Erdman, L.

medrxiv logopreprintJun 7 2025
Artificial intelligence (AI) is rapidly transforming healthcare, but its benefits are not reaching all patients equally. Children remain overlooked with only 17% of FDA-approved medical AI devices labeled for pediatric use. In this work, we demonstrate that this exclusion may stem from a fundamental data gap. Our systematic review of 181 public medical imaging datasets reveals that children represent just under 1% of available data, while the majority of machine learning imaging conference papers we surveyed utilized publicly available data for methods development. Much like systematic biases of other kinds in model development, past studies have demonstrated the manner in which pediatric representation in data used for models intended for the pediatric population is essential for model performance in that population. We add to these findings, showing that adult-trained chest radiograph models exhibit significant age bias when applied to pediatric populations, with higher false positive rates in younger children. This work underscores the urgent need for increased pediatric representation in publicly accessible medical datasets. We provide actionable recommendations for researchers, policymakers, and data curators to address this age equity gap and ensure AI benefits patients of all ages. 1-2 sentence summaryOur analysis reveals a critical healthcare age disparity: children represent less than 1% of public medical imaging datasets. This gap in representation leads to biased predictions across medical image foundation models, with the youngest patients facing the highest risk of misdiagnosis.

Artificial Intelligence-Driven Innovations in Diabetes Care and Monitoring

Abdul Rahman, S., Mahadi, M., Yuliana, D., Budi Susilo, Y. K., Ariffin, A. E., Amgain, K.

medrxiv logopreprintJun 2 2025
This study explores Artificial Intelligence (AI)s transformative role in diabetes care and monitoring, focusing on innovations that optimize patient outcomes. AI, particularly machine learning and deep learning, significantly enhances early detection of complications like diabetic retinopathy and improves screening efficacy. The methodology employs a bibliometric analysis using Scopus, VOSviewer, and Publish or Perish, analyzing 235 articles from 2023-2025. Results indicate a strong interdisciplinary focus, with Computer Science and Medicine being dominant subject areas (36.9% and 12.9% respectively). Bibliographic coupling reveals robust international collaborations led by the U.S. (1558.52 link strength), UK, and China, with key influential documents by Zhu (2023c) and Annuzzi (2023). This research highlights AIs impact on enhancing monitoring, personalized treatment, and proactive care, while acknowledging challenges in data privacy and ethical deployment. Future work should bridge technological advancements with real-world implementation to create equitable and efficient diabetes care systems.

Evaluating the performance and potential bias of predictive models for the detection of transthyretin cardiac amyloidosis

Hourmozdi, J., Easton, N., Benigeri, S., Thomas, J. D., Narang, A., Ouyang, D., Duffy, G., Upton, R., Hawkes, W., Akerman, A., Okwuosa, I., Kline, A., Kho, A. N., Luo, Y., Shah, S. J., Ahmad, F. S.

medrxiv logopreprintJun 2 2025
BackgroundDelays in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CM) contribute to the significant morbidity of the condition, especially in the era of disease-modifying therapies. Screening for ATTR-CM with AI and other algorithms may improve timely diagnosis, but these algorithms have not been directly compared. ObjectivesThe aim of this study was to compare the performance of four algorithms for ATTR-CM detection in a heart failure population and assess the risk for harms due to model bias. MethodsWe identified patients in an integrated health system from 2010-2022 with ATTR-CM and age- and sex-matched them to controls with heart failure to target 5% prevalence. We compared the performance of a claims-based random forest model (Huda et al. model), a regression-based score (Mayo ATTR-CM), and two deep learning echo models (EchoNet-LVH and EchoGo(R) Amyloidosis). We evaluated for bias using standard fairness metrics. ResultsThe analytical cohort included 176 confirmed cases of ATTR-CM and 3192 control patients with 79.2% self-identified as White and 9.0% as Black. The Huda et al. model performed poorly (AUC 0.49). Both deep learning echo models had a higher AUC when compared to the Mayo ATTR-CM Score (EchoNet-LVH 0.88; EchoGo Amyloidosis 0.92; Mayo ATTR-CM Score 0.79; DeLong P<0.001 for both). Bias auditing met fairness criteria for equal opportunity among patients who identified as Black. ConclusionsDeep learning, echo-based models to detect ATTR-CM demonstrated best overall discrimination when compared to two other models in external validation with low risk of harms due to racial bias.
Page 1 of 15 results
Show
per page
1

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.