Sort by:
Page 1 of 325 results
Next

Segmentation of clinical imagery for improved epidural stimulation to address spinal cord injury

Matelsky, J. K., Sharma, P., Johnson, E. C., Wang, S., Boakye, M., Angeli, C., Forrest, G. F., Harkema, S. J., Tenore, F.

medrxiv logopreprintJun 20 2025
Spinal cord injury (SCI) can severely impair motor and autonomic function, with long-term consequences for quality of life. Epidural stimulation has emerged as a promising intervention, offering partial recovery by activating neural circuits below the injury. To make this therapy effective in practice, precise placement of stimulation electrodes is essential -- and that requires accurate segmentation of spinal cord structures in MRI data. We present a protocol for manual segmentation tailored to SCI anatomy, and evaluated a deep learning approach using a U-Net architecture to automate this segmentation process. Our approach yields accurate, efficient segmentation that identify potential electrode placement sites with high fidelity. Preliminary results suggest that this framework can accelerate SCI MRI analysis and improve planning for epidural stimulation, helping bridge the gap between advanced neurotechnologies and real-world clinical application with faster surgeries and more accurate electrode placement.

Multimodal MRI Marker of Cognition Explains the Association Between Cognition and Mental Health in UK Biobank

Buianova, I., Silvestrin, M., Deng, J., Pat, N.

medrxiv logopreprintJun 18 2025
BackgroundCognitive dysfunction often co-occurs with psychopathology. Advances in neuroimaging and machine learning have led to neural indicators that predict individual differences in cognition with reasonable performance. We examined whether these neural indicators explain the relationship between cognition and mental health in the UK Biobank cohort (n > 14000). MethodsUsing machine learning, we quantified the covariation between general cognition and 133 mental health indices and derived neural indicators of cognition from 72 neuroimaging phenotypes across diffusion-weighted MRI (dwMRI), resting-state functional MRI (rsMRI), and structural MRI (sMRI). With commonality analyses, we investigated how much of the cognition-mental health covariation is captured by each neural indicator and neural indicators combined within and across MRI modalities. ResultsThe predictive association between mental health and cognition was at out-of-sample r = 0.3. Neuroimaging phenotypes captured 2.1% to 25.8% of the cognition-mental health covariation. The highest proportion of variance explained by dwMRI was attributed to the number of streamlines connecting cortical regions (19.3%), by rsMRI through functional connectivity between 55 large-scale networks (25.8%), and by sMRI via the volumetric characteristics of subcortical structures (21.8%). Combining neuroimaging phenotypes within modalities improved the explanation to 25.5% for dwMRI, 29.8% for rsMRI, and 31.6% for sMRI, and combining them across all MRI modalities enhanced the explanation to 48%. ConclusionsWe present an integrated approach to derive multimodal MRI markers of cognition that can be transdiagnostically linked to psychopathology. This demonstrates that the predictive ability of neural indicators extends beyond the prediction of cognition itself, enabling us to capture the cognition-mental health covariation.

USING ARTIFICIAL INTELLIGENCE TO PREDICT TREATMENT OUTCOMES IN PATIENTS WITH NEUROGENIC OVERACTIVE BLADDER AND MULTIPLE SCLEROSIS

Chang, O., Lee, J., Lane, F., Demetriou, M., Chang, P.

medrxiv logopreprintJun 18 2025
Introduction and ObjectivesMany women with multiple sclerosis (MS) experience neurogenic overactive bladder (NOAB) characterized by urinary frequency, urinary urgency and urgency incontinence. The objective of the study was to create machine learning (ML) models utilizing clinical and imaging data to predict NOAB treatment success stratified by treatment type. MethodsThis was a retrospective cohort study of female patients with diagnosis of NOAB and MS seen at a tertiary academic center from 2017-2022. Clinical and imaging data were extracted. Three types of NOAB treatment options evaluated included behavioral therapy, medication therapy and minimally invasive therapies. The primary outcome - treatment success was defined as > 50% reduction in urinary frequency, urinary urgency or a subjective perception of treatment success. For the construction of the logistic regression ML models, bivariate analyses were performed with backward selection of variables with p-values of < 0.10 and clinically relevant variables applied. For ML, the cohort was split into a training dataset (70%) and a test dataset (30%). Area under the curve (AUC) scores are calculated to evaluate model performance. ResultsThe 110 patients included had a mean age of patients were 59 years old (SD 14 years), with a predominantly White cohort (91.8%), post-menopausal (68.2%). Patients were stratified by NOAB treatment therapy type received with 70 patients (63.6%) at behavioral therapy, 58 (52.7%) with medication therapy and 44 (40%) with minimally invasive therapies. On MRI brain imaging, 63.6% of patients had > 20 lesions though majority were not active lesions. The lesions were mostly located within the supratentorial (94.5%), infratentorial (68.2%) and 58.2 infratentorial brain (63.8%) as well as in the deep white matter (53.4%). For MRI spine imaging, most of the lesions were in the cervical spine (71.8%) followed by thoracic spine (43.7%) and lumbar spine (6.4%).10.3%). After feature selection, the top 10 highest ranking features were used to train complimentary LASSO-regularized logistic regression (LR) and extreme gradient-boosted tree (XGB) models. The top-performing LR models for predicting response to behavioral, medication, and minimally invasive therapies yielded AUC values of 0.74, 0.76, and 0.83, respectively. ConclusionsUsing these top-ranked features, LR models achieved AUC values of 0.74-0.83 for prediction of treatment success based on individual factors. Further prospective evaluation is needed to better characterize and validate these identified associations.

Radiologist-AI workflow can be modified to reduce the risk of medical malpractice claims

Bernstein, M., Sheppard, B., Bruno, M. A., Lay, P. S., Baird, G. L.

medrxiv logopreprintJun 16 2025
BackgroundArtificial Intelligence (AI) is rapidly changing the legal landscape of radiology. Results from a previous experiment suggested that providing AI error rates can reduce perceived radiologist culpability, as judged by mock jury members (4). The current study advances this work by examining whether the radiologists behavior also impacts perceptions of liability. Methods. Participants (n=282) read about a hypothetical malpractice case where a 50-year-old who visited the Emergency Department with acute neurological symptoms received a brain CT scan to determine if bleeding was present. An AI system was used by the radiologist who interpreted imaging. The AI system correctly flagged the case as abnormal. Nonetheless, the radiologist concluded no evidence of bleeding, and the blood-thinner t-PA was administered. Participants were randomly assigned to either a 1.) single-read condition, where the radiologist interpreted the CT once after seeing AI feedback, or 2.) a double-read condition, where the radiologist interpreted the CT twice, first without AI and then with AI feedback. Participants were then told the patient suffered irreversible brain damage due to the missed brain bleed, resulting in the patient (plaintiff) suing the radiologist (defendant). Participants indicated whether the radiologist met their duty of care to the patient (yes/no). Results. Hypothetical jurors were more likely to side with the plaintiff in the single-read condition (106/142, 74.7%) than in the double-read condition (74/140, 52.9%), p=0.0002. Conclusion. This suggests that the penalty for disagreeing with correct AI can be mitigated when images are interpreted twice, or at least if a radiologist gives an interpretation before AI is used.

Deep-Learning Based Contrast Boosting Improves Lesion Visualization and Image Quality: A Multi-Center Multi-Reader Study on Clinical Performance with Standard Contrast Enhanced MRI of Brain Tumors

Pasumarthi, S., Campbell Arnold, T., Colombo, S., Rudie, J. D., Andre, J. B., Elor, R., Gulaka, P., Shankaranarayanan, A., Erb, G., Zaharchuk, G.

medrxiv logopreprintJun 13 2025
BackgroundGadolinium-based Contrast Agents (GBCAs) are used in brain MRI exams to improve the visualization of pathology and improve the delineation of lesions. Higher doses of GBCAs can improve lesion sensitivity but involve substantial deviation from standard-of-care procedures and may have safety implications, particularly in the light of recent findings on gadolinium retention and deposition. PurposeTo evaluate the clinical performance of an FDA cleared deep-learning (DL) based contrast boosting algorithm in routine clinical brain MRI exams. MethodsA multi-center retrospective database of contrast-enhanced brain MRI images (obtained from April 2017 to December 2023) was used to evaluate a DL-based contrast boosting algorithm. Pre-contrast and standard post-contrast (SC) images were processed with the algorithm to obtain contrast boosted (CB) images. Quantitative performance of CB images in comparison to SC images was compared using contrast-to-noise ratio (CNR), lesion-to-brain ratio (LBR) and contrast enhancement percentage (CEP). Three board-certified radiologists reviewed CB and SC images side-by-side for qualitative evaluation and rated them on a 4-point Likert scale for lesion contrast enhancement, border delineation, internal morphology, overall image quality, presence of artefacts, and changes in vessel conspicuity. The presence, cause, and severity of any false lesions was recorded. CB results were compared to SC using Wilcoxon signed rank test for statistical significance. ResultsBrain MRI images from 110 patients (47 {+/-} 22 years; 52 Females, 47 Males, 11 N/A) were evaluated. CB images had superior quantitative performance than SC images in terms of CNR (+634%), LBR (+70%) and CEP (+150%). In the qualitative assessment CB images showed better lesion visualization (3.73 vs 3.16) and had better image quality (3.55 vs 3.07). Readers were able to rule out all false lesions on CB by using SC for comparison. ConclusionsDeep learning based contrast boosting improves lesion visualization and image quality without increasing contrast dosage. Key ResultsO_LIIn a retrospective study of 110 patients, deep-learning based contrast boosted (CB) images showed better lesion visualization than standard post-contrast (SC) brain MRI images (3.73 vs 3.16; mean reader scores [4-point Likert scale]) C_LIO_LICB images had better overall image quality than SC images (3.55 vs 3.07) C_LIO_LIContrast-to-noise ratio, Lesion-to-brain Ratio and Contrast Enhancement Percentage for CB images were significantly higher than SC images (+729%, +88% and +165%; p < 0.001) C_LI Summary StatementDeep-learning based contrast boosting achieves better lesion visualization and overall image quality and provides more contrast information, without increasing the contrast dosage in contrast-enhanced brain MR protocols.

Protocol of the observational study STRATUM-OS: First step in the development and validation of the STRATUM tool based on multimodal data processing to assist surgery in patients affected by intra-axial brain tumours

Fabelo, H., Ramallo-Farina, Y., Morera, J., Pineiro, J. F., Lagares, A., Jimenez-Roldan, L., Burstrom, G., Garcia-Bello, M. A., Garcia-Perez, L., Falero, R., Gonzalez, M., Duque, S., Rodriguez-Jimenez, C., Hernandez, M., Delgado-Sanchez, J. J., Paredes, A. B., Hernandez, G., Ponce, P., Leon, R., Gonzalez-Martin, J. M., Rodriguez-Esparragon, F., Callico, G. M., Wagner, A. M., Clavo, B., STRATUM,

medrxiv logopreprintJun 13 2025
IntroductionIntegrated digital diagnostics can support complex surgeries in many anatomic sites, and brain tumour surgery represents one of the most complex cases. Neurosurgeons face several challenges during brain tumour surgeries, such as differentiating critical tissue from brain tumour margins. To overcome these challenges, the STRATUM project will develop a 3D decision support tool for brain surgery guidance and diagnostics based on multimodal data processing, including hyperspectral imaging, integrated as a point-of-care computing tool in neurosurgical workflows. This paper reports the protocol for the development and technical validation of the STRATUM tool. Methods and analysisThis international multicentre, prospective, open, observational cohort study, STRATUM-OS (study: 28 months, pre-recruitment: 2 months, recruitment: 20 months, follow-up: 6 months), with no control group, will collect data from 320 patients undergoing standard neurosurgical procedures to: (1) develop and technically validate the STRATUM tool, and (2) collect the outcome measures for comparing the standard procedure versus the standard procedure plus the use of the STRATUM tool during surgery in a subsequent historically controlled non-randomized clinical trial. Ethics and disseminationThe protocol was approved by the participant Ethics Committees. Results will be disseminated in scientific conferences and peer-reviewed journals. Trial registration number[Pending Number] ARTICLE SUMMARYO_ST_ABSStrengths and limitations of this studyC_ST_ABSO_LISTRATUM-OS will be the first multicentre prospective observational study to develop and technically validate a 3D decision support tool for brain surgery guidance and diagnostics in real-time based on artificial intelligence and multimodal data processing, including the emerging hyperspectral imaging modality. C_LIO_LIThis study encompasses a prospective collection of multimodal pre, intra and postoperative medical data, including innovative imaging modalities, from patients with intra-axial brain tumours. C_LIO_LIThis large observational study will act as historical control in a subsequent clinical trial to evaluate a fully-working prototype. C_LIO_LIAlthough the estimated sample size is deemed adequate for the purpose of the study, the complexity of the clinical context and the type of surgery could potentially lead to under-recruitment and under-representation of less prevalent tumour types. C_LI

CEREBLEED: Automated quantification and severity scoring of intracranial hemorrhage on non-contrast CT

Cepeda, S., Esteban-Sinovas, O., Arrese, I., Sarabia, R.

medrxiv logopreprintJun 13 2025
BackgroundIntracranial hemorrhage (ICH), whether spontaneous or traumatic, is a neurological emergency with high morbidity and mortality. Accurate assessment of severity is essential for neurosurgical decision-making. This study aimed to develop and evaluate a fully automated, deep learning-based tool for the standardized assessment of ICH severity, based on the segmentation of the hemorrhage and intracranial structures, and the computation of an objective severity index. MethodsNon-contrast cranial CT scans from patients with spontaneous or traumatic ICH were retrospectively collected from public datasets and a tertiary care center. Deep learning models were trained to segment hemorrhages and intracranial structures. These segmentations were used to compute a severity index reflecting bleeding burden and mass effect through volumetric relationships. Segmentation performance was evaluated on a hold-out test cohort. In a prospective cohort, the severity index was assessed in relation to expert-rated CT severity, clinical outcomes, and the need for urgent neurosurgical intervention. ResultsA total of 1,110 non-contrast cranial CT scans were analyzed, 900 from the retrospective cohort and 200 from the prospective evaluation cohort. The binary segmentation model achieved a median Dice score of 0.90 for total hemorrhage. The multilabel model yielded Dice scores ranging from 0.55 to 0.94 across hemorrhage subtypes. The severity index significantly correlated with expert-rated CT severity (p < 0.001), the modified Rankin Scale (p = 0.007), and the Glasgow Outcome Scale-Extended (p = 0.039), and independently predicted the need for urgent surgery (p < 0.001). A threshold [~]300 was identified as a decision point for surgical management (AUC = 0.83). ConclusionWe developed a fully automated and openly accessible pipeline for the analysis of non-contrast cranial CT in intracranial hemorrhage. It computes a novel index that objectively quantifies hemorrhage severity and is significantly associated with clinically relevant outcomes, including the need for urgent neurosurgical intervention.

Clinically reported covert cerebrovascular disease and risk of neurological disease: a whole-population cohort of 395,273 people using natural language processing

Iveson, M. H., Mukherjee, M., Davidson, E. M., Zhang, H., Sherlock, L., Ball, E. L., Mair, G., Hosking, A., Whalley, H., Poon, M. T. C., Wardlaw, J. M., Kent, D., Tobin, R., Grover, C., Alex, B., Whiteley, W. N.

medrxiv logopreprintJun 13 2025
ImportanceUnderstanding the relevance of covert cerebrovascular disease (CCD) for later health will allow clinicians to more effectively monitor and target interventions. ObjectiveTo examine the association between clinically reported CCD, measured using natural language processing (NLP), and subsequent disease risk. Design, Setting and ParticipantsWe conducted a retrospective e-cohort study using linked health record data. From all people with clinical brain imaging in Scotland from 2010 to 2018, we selected people with no prior hospitalisation for neurological disease. The data were analysed from March 2024 to June 2025. ExposureFour phenotypes were identified with NLP of imaging reports: white matter hypoattenuation or hyperintensities (WMH), lacunes, cortical infarcts and cerebral atrophy. Main outcomes and measuresHazard ratios (aHR) for stroke, dementia, and Parkinsons disease (conditions previously associated with CCD), epilepsy (a brain-based control condition) and colorectal cancer (a non-brain control condition), adjusted for age, sex, deprivation, region, scan modality, and pre-scan healthcare, were calculated for each phenotype. ResultsFrom 395,273 people with brain imaging and no history of neurological disease, 145,978 (37%) had [&ge;]1 phenotype. For each phenotype, the aHR of any stroke was: WMH 1.4 (95%CI: 1.3-1.4), lacunes 1.6 (1.5-1.6), cortical infarct 1.7 (1.6-1.8), and cerebral atrophy 1.1 (1.0-1.1). The aHR of any dementia was: WMH, 1.3 (1.3-1.3), lacunes, 1.0 (0.9-1.0), cortical infarct 1.1 (1.0-1.1) and cerebral atrophy 1.7 (1.7-1.7). The aHR of Parkinsons disease was, in people with a report of: WMH 1.1 (1.0-1.2), lacunes 1.1 (0.9-1.2), cortical infarct 0.7 (0.6-0.9) and cerebral atrophy 1.4 (1.3-1.5). The aHRs between CCD phenotypes and epilepsy and colorectal cancer overlapped the null. Conclusions and RelevanceNLP identified CCD and atrophy phenotypes from routine clinical image reports, and these had important associations with future stroke, dementia and Parkinsons disease. Prevention of neurological disease in people with CCD should be a priority for healthcare providers and policymakers. Key PointsO_ST_ABSQuestionC_ST_ABSAre measures of Covert Cerebrovascular Disease (CCD) associated with the risk of subsequent disease (stroke, dementia, Parkinsons disease, epilepsy, and colorectal cancer)? FindingsThis study used a validated NLP algorithm to identify CCD (white matter hypoattenuation/hyperintensities, lacunes, cortical infarcts) and cerebral atrophy from both MRI and computed tomography (CT) imaging reports generated during routine healthcare in >395K people in Scotland. In adjusted models, we demonstrate higher risk of dementia (particularly Alzheimers disease) in people with atrophy, and higher risk of stroke in people with cortical infarcts. However, associations with an age-associated control outcome (colorectal cancer) were neutral, supporting a causal relationship. It also highlights differential associations between cerebral atrophy and dementia and cortical infarcts and stroke risk. MeaningCCD or atrophy on brain imaging reports in routine clinical practice is associated with a higher risk of stroke or dementia. Evidence is needed to support treatment strategies to reduce this risk. NLP can identify these important, otherwise uncoded, disease phenotypes, allowing research at scale into imaging-based biomarkers of dementia and stroke.

Cross-dataset Evaluation of Dementia Longitudinal Progression Prediction Models

Zhang, C., An, L., Wulan, N., Nguyen, K.-N., Orban, C., Chen, P., Chen, C., Zhou, J. H., Liu, K., Yeo, B. T. T., Alzheimer's Disease Neuroimaging Initiative,, Australian Imaging Biomarkers and Lifestyle Study of Aging,

medrxiv logopreprintJun 11 2025
IntroductionAccurately predicting Alzheimers Disease (AD) progression is useful for clinical care. The 2019 TADPOLE (The Alzheimers Disease Prediction Of Longitudinal Evolution) challenge evaluated 92 algorithms from 33 teams worldwide. Unlike typical clinical prediction studies, TADPOLE accommodates (1) variable number of observed timepoints across patients, (2) missing data across modalities and visits, and (3) prediction over an open-ended time horizon, which better reflects real-world data. However, TADPOLE only used the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset, so how well top algorithms generalize to other cohorts remains unclear. MethodsWe tested five algorithms in three external datasets covering 2,312 participants and 13,200 timepoints. The algorithms included FROG, the overall TADPOLE winner, which utilized a unique Longitudinal-to-Cross-sectional (L2C) transformation to convert variable-length longitudinal histories into feature vectors of the same length across participants (i.e., same-length feature vectors). We also considered two FROG variants. One variant unified all XGBoost models from the original FROG with a single feedforward neural network (FNN), which we referred to as L2C-FNN. We also included minimal recurrent neural networks (MinimalRNN), which was ranked second at publication time, as well as AD Course Map (AD-Map), which outperformed MinimalRNN at publication time. All five models - three FROG variants, MinimalRNN and AD-Map - were trained on ADNI and tested on the external datasets. ResultsL2C-FNN performed the best overall. In the case of predicting cognition and ventricle volume, L2C-FNN and AD-Map were the best. For clinical diagnosis prediction, L2C-FNN was the best, while AD-Map was the worst. L2C-FNN also maintained its edge over other models, regardless of the number of observed timepoints, and regardless of the prediction horizon from 0 to 6 years into the future. ConclusionsL2C-FNN shows strong potential for both short-term and long-term dementia progression prediction. Pretrained ADNI models are available: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/predict_phenotypes/Zhang2025_L2CFNN.

Magnetic resonance imaging and the evaluation of vestibular schwannomas: a systematic review

Lee, K. S., Wijetilake, N., Connor, S., Vercauteren, T., Shapey, J.

medrxiv logopreprintJun 6 2025
IntroductionThe assessment of vestibular schwannoma (VS) requires a standardized measurement approach as growth is a key element in defining treatment strategy for VS. Volumetric measurements offer higher sensitivity and precision, but existing methods of segmentation, are labour-intensive, lack standardisation and are prone to variability and subjectivity. A new core set of measurement indicators reported consistently, will support clinical decision-making and facilitate evidence synthesis. This systematic review aimed to identify indicators used in 1) magnetic resonance imaging (MRI) acquisition and 2) measurement or 3) growth of VS. This work is expected to inform a Delphi consensus. MethodsSystematic searches of Medline, Embase and Cochrane Central were undertaken on 4th October 2024. Studies that assessed the evaluation of VS with MRI, between 2014 and 2024 were included. ResultsThe final dataset consisted of 102 studies and 19001 patients. Eighty-six (84.3%) studies employed post contrast T1 as the MRI acquisition of choice for evaluating VS. Nine (8.8%) studies additionally employed heavily weighted T2 sequences such as constructive interference in steady state (CISS) and FIESTA-C. Only 45 (44.1%) studies reported the slice thickness with the majority 38 (84.4%) choosing <3mm in thickness. Fifty-eight (56.8%) studies measured volume whilst 49 (48.0%) measured the largest linear dimension; 14 (13.7%) studies used both measurements. Four studies employed semi-automated or automated segmentation processes to measure the volumes of VS. Of 68 studies investigating growth, 54 (79.4%) provided a threshold. Significant variation in volumetric growth was observed but the threshold for significant percentage change reported by most studies was 20% (n = 18). ConclusionSubstantial variation in MRI acquisition, and methods for evaluating measurement and growth of VS, exists across the literature. This lack of standardization is likely attributed to resource constraints and the fact that currently available volumetric segmentation methods are very labour-intensive. Following the identification of the indicators employed in the literature, this study aims to develop a Delphi consensus for the standardized measurement of VS and uptake in employing a data-driven artificial intelligence-based measuring tools.
Page 1 of 325 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.