Sort by:
Page 1 of 220 results
Next

Risk prediction for lung cancer screening: a systematic review and meta-regression

Rezaeianzadeh, R., Leung, C., Kim, S. J., Choy, K., Johnson, K. M., Kirby, M., Lam, S., Smith, B. M., Sadatsafavi, M.

medrxiv logopreprintSep 12 2025
BackgroundLung cancer (LC) is the leading cause of cancer mortality, often diagnosed at advanced stages. Screening reduces mortality in high-risk individuals, but its efficiency can improve with pre- and post-screening risk stratification. With recent LC screening guideline updates in Europe and the US, numerous novel risk prediction models have emerged since the last systematic review of such models. We reviewed risk-based models for selecting candidates for CT screening, and post-CT stratification. MethodsWe systematically reviewed Embase and MEDLINE (2020-2024), identifying studies proposing new LC risk models for screening selection or nodule classification. Data extraction included study design, population, model type, risk horizon, and internal/external validation metrics. In addition, we performed an exploratory meta-regression of AUCs to assess whether sample size, model class, validation type, and biomarker use were associated with discrimination. ResultsOf 1987 records, 68 were included: 41 models were for screening selection (20 without biomarkers, 21 with), and 27 for nodule classification. Regression-based models predominated, though machine learning and deep learning approaches were increasingly common. Discrimination ranged from moderate (AUC{approx}0.70) to excellent (>0.90), with biomarker and imaging-enhanced models often outperforming traditional ones. Model calibration was inconsistently reported, and fewer than half underwent external validation. Meta-regression suggested that, among pre-screening models, larger sample sizes were modestly associated with higher AUC. Conclusion75 models had been identified prior to 2020, we found 68 models since. This reflects growing interest in personalized LC screening. While many demonstrate strong discrimination, inconsistent calibration and limited external validation hinder clinical adoption. Future efforts should prioritize improving existing models rather than developing new ones, transparent evaluation, cost-effectiveness analysis, and real-world implementation.

A hybrid computer vision model to predict lung cancer in diverse populations

Zakkar, A., Perwaiz, N., Harikrishnan, V., Zhong, W., Narra, V., Krule, A., Yousef, F., Kim, D., Burrage-Burton, M., Lawal, A. A., Gadi, V., Korpics, M. C., Kim, S. J., Chen, Z., Khan, A. A., Molina, Y., Dai, Y., Marai, E., Meidani, H., Nguyen, R., Salahudeen, A. A.

medrxiv logopreprintAug 29 2025
PURPOSE Disparities of lung cancer incidence exist in Black populations and screening criteria underserve Black populations due to disparately elevated risk in the screening eligible population. Prediction models that integrate clinical and imaging-based features to individualize lung cancer risk is a potential means to mitigate these disparities. PATIENTS AND METHODS This Multicenter (NLST) and catchment population based (UIH, urban and suburban Cook County) study utilized participants at risk of lung cancer with available lung CT imaging and follow up between the years 2015 and 2024. 53,452 in NLST and 11,654 in UIH were included based on age and tobacco use based risk factors for lung cancer. Cohorts were used for training and testing of deep and machine learning models using clinical features alone or combined with CT image features (hybrid computer vision). RESULTS An optimized 7 clinical feature model achieved ROC-AUC values ranging 0.64-0.67 in NLST and 0.60-0.65 in UIH cohorts across multiple years. Incorporation of imaging features to form a hybrid computer vision model significantly improved ROC-AUC values to 0.78-0.91 in NLST but deteriorated in UIH with ROC-AUC values of 0.68- 0.80, attributable to Black participants where ROC-AUC values ranged from 0.63-0.72 across multiple years. Retraining the hybrid computer vision model by incorporating Black and other participants from the UIH cohort improved performance with ROC- AUC values of 0.70-0.87 in a held out UIH test set. CONCLUSION Hybrid computer vision predicted risk with improved accuracy compared to clinical risk models alone. However, potential biases in image training data reduced model generalizability in Black participants. Performance was improved upon retraining with a subset of the UIH cohort, suggesting that inclusive training and validation datasets can minimize racial disparities. Future studies incorporating vision models trained on representative data sets may demonstrate improved health equity upon clinical use.

Benign-Malignant Classification of Pulmonary Nodules in CT Images Based on Fractal Spectrum Analysis

Ma, Y., Lei, S., Wang, B., Qiao, Y., Xing, F., Liang, T.

medrxiv logopreprintAug 26 2025
This study reveals that pulmonary nodules exhibit distinct multifractal characteristics, with malignant nodules demonstrating significantly higher fractal dimensions at larger scales. Based on this fundamental finding, an automatic benign-malignant classification method for pulmonary nodules in CT images was developed using fractal spectrum analysis. By computing continuous three-dimensional fractal dimensions on 121 nodule samples from the LIDC-IDRI database, a 201-dimensional fractal feature spectrum was extracted, and a simplified multilayer perceptron neural network (with only 6x6 minimal neural network nodes in the intermediate layers) was constructed for pulmonary nodule classification. Experimental results demonstrate that this method achieved 96.69% accuracy in distinguishing benign from malignant pulmonary nodules. The discovery of scale-dependent multifractal properties enables fractal spectrum analysis to effectively capture the complexity differences in multi-scale structures of malignant nodules, providing an efficient and interpretable AI-aided diagnostic method for early lung cancer diagnosis.

Multimodal Deep Learning for ARDS Detection

Broecker, S., Adams, J. Y., Kumar, G., Callcut, R., Ni, Y., Strohmer, T.

medrxiv logopreprintAug 12 2025
ObjectivePoor outcomes in acute respiratory distress syndrome (ARDS) can be alleviated with tools that support early diagnosis. Current machine learning methods for detecting ARDS do not take full advantage of the multimodality of ARDS pathophysiology. We developed a multimodal deep learning model that uses imaging data, continuously collected ventilation data, and tabular data derived from a patients electronic health record (EHR) to make ARDS predictions. Materials and MethodsA chest radiograph (x-ray), at least two hours of ventilator waveform (VWD) data within the first 24 hours of intubation, and EHR-derived tabular data were used from 220 patients admitted to the ICU to train a deep learning model. The model uses pretrained encoders for the x-rays and ventilation data and trains a feature extractor on tabular data. Encoded features for a patient are combined to make a single ARDS prediction. Ablation studies for each modality assessed their effect on the models predictive capability. ResultsThe trimodal model achieved an area under the receiver operator curve (AUROC) of 0.86 with a 95% confidence interval of 0.01. This was a statistically significant improvement (p<0.05) over single modality models and bimodal models trained on VWD+tabular and VWD+x-ray data. Discussion and ConclusionOur results demonstrate the potential utility of using deep learning to address complex conditions with heterogeneous data. More work is needed to determine the additive effect of modalities on ARDS detection. Our framework can serve as a blueprint for building performant multimodal deep learning models for conditions with small, heterogeneous datasets.

Explainable Cryobiopsy AI Model, CRAI, to Predict Disease Progression for Transbronchial Lung Cryobiopsies with Interstitial Pneumonia

Uegami, W., Okoshi, E. N., Lami, K., Nei, Y., Ozasa, M., Kataoka, K., Kitamura, Y., Kohashi, Y., Cooper, L. A. D., Sakanashi, H., Saito, Y., Kondoh, Y., the study group on CRYOSOLUTION,, Fukuoka, J.

medrxiv logopreprintAug 8 2025
BackgroundInterstitial lung disease (ILD) encompasses diverse pulmonary disorders with varied prognoses. Current pathological diagnoses suffer from inter-observer variability,necessitating more standardized approaches. We developed an ensemble model AI for cryobiopsy, CRAI, an artificial intelligence model to analyze transbronchial lung cryobiopsy (TBLC) specimens and predict patient outcomes. MethodsWe developed an explainable AI model, CRAI, to analyze TBLC. CRAI comprises seven modules for detecting histological features, generating 19 pathologically significant findings. A downstream XGBoost classifier was developed to predict disease progression using these findings. The models performance was evaluated using respiratory function changes and survival analysis in cross-validation and external test cohorts. FindingsIn the internal cross-validation (135 cases), the model predicted 105 cases without disease progression and 30 with disease progression. The annual {Delta}%FVC was -1.293 in the non-progressive group versus -5.198 in the progressive group, outperforming most pathologists diagnoses. In the external test cohort (48 cases), the model predicted 38 non-progressive and 10 progressive cases. Survival analysis demonstrated significantly shorter survival times in the progressive group (p=0.034). InterpretationCRAI provides a comprehensive, interpretable approach to analyzing TBLC specimens, offering potential for standardizing ILD diagnosis and predicting disease progression. The model could facilitate early identification of progressive cases and guide personalized therapeutic interventions. FundingNew Energy and Industrial Technology Development Organization (NEDO) and Japanese Ministry of Health, Labor, and Welfare.

DREAM: A framework for discovering mechanisms underlying AI prediction of protected attributes

Gadgil, S. U., DeGrave, A. J., Janizek, J. D., Xu, S., Nwandu, L., Fonjungo, F., Lee, S.-I., Daneshjou, R.

medrxiv logopreprintJul 21 2025
Recent advances in Artificial Intelligence (AI) have started disrupting the healthcare industry, especially medical imaging, and AI devices are increasingly being deployed into clinical practice. Such classifiers have previously demonstrated the ability to discern a range of protected demographic attributes (like race, age, sex) from medical images with unexpectedly high performance, a sensitive task which is difficult even for trained physicians. In this study, we motivate and introduce a general explainable AI (XAI) framework called DREAM (DiscoveRing and Explaining AI Mechanisms) for interpreting how AI models trained on medical images predict protected attributes. Focusing on two modalities, radiology and dermatology, we are successfully able to train high-performing classifiers for predicting race from chest x-rays (ROC-AUC score of [~]0.96) and sex from dermoscopic lesions (ROC-AUC score of [~]0.78). We highlight how incorrect use of these demographic shortcuts can have a detrimental effect on the performance of a clinically relevant downstream task like disease diagnosis under a domain shift. Further, we employ various XAI techniques to identify specific signals which can be leveraged to predict sex. Finally, we propose a technique, which we callremoval via balancing, to quantify how much a signal contributes to the classification performance. Using this technique and the signals identified, we are able to explain [~]15% of the total performance for radiology and [~]42% of the total performance for dermatology. We envision DREAM to be broadly applicable to other modalities and demographic attributes. This analysis not only underscores the importance of cautious AI application in healthcare but also opens avenues for improving the transparency and reliability of AI-driven diagnostic tools.

A clinically relevant morpho-molecular classification of lung neuroendocrine tumours

Sexton-Oates, A., Mathian, E., Candeli, N., Lim, Y., Voegele, C., Di Genova, A., Mange, L., Li, Z., van Weert, T., Hillen, L. M., Blazquez-Encinas, R., Gonzalez-Perez, A., Morrison, M. L., Lauricella, E., Mangiante, L., Bonheme, L., Moonen, L., Absenger, G., Altmuller, J., Degletagne, C., Brustugun, O. T., Cahais, V., Centonze, G., Chabrier, A., Cuenin, C., Damiola, F., de Montpreville, V. T., Deleuze, J.-F., Dingemans, A.-M. C., Fadel, E., Gadot, N., Ghantous, A., Graziano, P., Hofman, P., Hofman, V., Ibanez-Costa, A., Lacomme, S., Lopez-Bigas, N., Lund-Iversen, M., Milione, M., Muscarella, L

medrxiv logopreprintJul 18 2025
Lung neuroendocrine tumours (NETs, also known as carcinoids) are rapidly rising in incidence worldwide but have unknown aetiology and limited therapeutic options beyond surgery. We conducted multi-omic analyses on over 300 lung NETs including whole-genome sequencing (WGS), transcriptome profiling, methylation arrays, spatial RNA sequencing, and spatial proteomics. The integration of multi-omic data provides definitive proof of the existence of four strikingly different molecular groups that vary in patient characteristics, genomic and transcriptomic profiles, microenvironment, and morphology, as much as distinct diseases. Among these, we identify a new molecular group, enriched for highly aggressive supra-carcinoids, that displays an immune-rich microenvironment linked to tumour--macrophage crosstalk, and we uncover an undifferentiated cell population within supra-carcinoids, explaining their molecular and behavioural link to high-grade lung neuroendocrine carcinomas. Deep learning models accurately identified the Ca A1, Ca A2, and Ca B groups based on morphology alone, outperforming current histological criteria. The characteristic tumour microenvironment of supra-carcinoids and the validation of a panel of immunohistochemistry markers for the other three molecular groups demonstrates that these groups can be accurately identified based solely on morphological features, facilitating their implementation in the clinical setting. Our proposed morpho-molecular classification highlights group-specific therapeutic opportunities, including DLL3, FGFR, TERT, and BRAF inhibitors. Overall, our findings unify previously proposed molecular classifications and refine the lung cancer map by revealing novel tumour types and potential treatments, with significant implications for prognosis and treatment decision-making.

A conversational artificial intelligence based web application for medical conversations: a prototype for a chatbot

Pires, J. G.

medrxiv logopreprintJul 17 2025
BackgroundArtificial Intelligence (AI) has evolved through various trends, with different subfields gaining prominence over time. Currently, Conversational Artificial Intelligence (CAI)--particularly Generative AI--is at the forefront. CAI models are primarily focused on text-based tasks and are commonly deployed as chatbots. Recent advancements by OpenAI have enabled the integration of external, independently developed models, allowing chatbots to perform specialized, task-oriented functions beyond general language processing. ObjectiveThis study aims to develop a smart chatbot that integrates large language models (LLMs) from OpenAI with specialized domain-specific models, such as those used in medical image diagnostics. The system leverages transfer learning via Googles Teachable Machine to construct image-based classifiers and incorporates a diabetes detection model developed in TensorFlow.js. A key innovation is the chatbots ability to extract relevant parameters from user input, trigger the appropriate diagnostic model, interpret the output, and deliver responses in natural language. The overarching goal is to demonstrate the potential of combining LLMs with external models to build multimodal, task-oriented conversational agents. MethodsTwo image-based models were developed and integrated into the chatbot system. The first analyzes chest X-rays to detect viral and bacterial pneumonia. The second uses optical coherence tomography (OCT) images to identify ocular conditions such as drusen, choroidal neovascularization (CNV), and diabetic macular edema (DME). Both models were incorporated into the chatbot to enable image-based medical query handling. In addition, a text-based model was constructed to process physiological measurements for diabetes prediction using TensorFlow.js. The architecture is modular: new diagnostic models can be added without redesigning the chatbot, enabling straightforward functional expansion. ResultsThe findings demonstrate effective integration between the chatbot and the diagnostic models, with only minor deviations from expected behavior. Additionally, a stub function was implemented within the chatbot to schedule medical appointments based on the severity of a patients condition, and it was specifically tested with the OCT and X-ray models. ConclusionsThis study demonstrates the feasibility of developing advanced AI systems--including image-based diagnostic models and chatbot integration--by leveraging Artificial Intelligence as a Service (AIaaS). It also underscores the potential of AI to enhance user experiences in bioinformatics, paving the way for more intuitive and accessible interfaces in the field. Looking ahead, the modular nature of the chatbot allows for the integration of additional diagnostic models as the system evolves.

A Clinically-Informed Framework for Evaluating Vision-Language Models in Radiology Report Generation: Taxonomy of Errors and Risk-Aware Metric

Guan, H., Hou, P. C., Hong, P., Wang, L., Zhang, W., Du, X., Zhou, Z., Zhou, L.

medrxiv logopreprintJul 14 2025
Recent advances in vision-language models (VLMs) have enabled automatic radiology report generation, yet current evaluation methods remain limited to general-purpose NLP metrics or coarse classification-based clinical scores. In this study, we propose a clinically informed evaluation framework for VLM-generated radiology reports that goes beyond traditional performance measures. We define a taxonomy of 12 radiology-specific error types, each annotated with clinical risk levels (low, medium, high) in collaboration with physicians. Using this framework, we conduct a comprehensive error analysis of three representative VLMs, i.e., DeepSeek VL2, CXR-LLaVA, and CheXagent, on 685 gold-standard, expert-annotated MIMIC-CXR cases. We further introduce a risk-aware evaluation metric, the Clinical Risk-weighted Error Score for Text-generation (CREST), to quantify safety impact. Our findings reveal critical model vulnerabilities, common error patterns, and condition-specific risk profiles, offering actionable insights for model development and deployment. This work establishes a safety-centric foundation for evaluating and improving medical report generation models. The source code of our evaluation framework, including CREST computation and error taxonomy analysis, is available at https://github.com/guanharry/VLM-CREST.

Genetically Optimized Modular Neural Networks for Precision Lung Cancer Diagnosis

Agrawal, V. L., Agrawal, T.

medrxiv logopreprintJun 30 2025
Lung cancer remains one of the leading causes of cancer mortality, and while low dose CT screening improves mortality, radiological detection is challenging due to the increasing shortage of radiologists. Artificial intelligence can significantly improve the procedure and also decrease the overall workload of the entire healthcare department. Building upon the existing works of application of genetic algorithm this study aims to create a novel algorithm for lung cancer diagnosis with utmost precision. We included a total of 156 CT scans of patients divided into two databases, followed by feature extraction using image statistics, histograms, and 2D transforms (FFT, DCT, WHT). Optimal feature vectors were formed and organized into Excel based knowledge-bases. Genetically trained classifiers like MLP, GFF-NN, MNN and SVM, are then optimized, with experimentations with different combinations of parameters, activation functions, and data partitioning percentages. Evaluation metrics included classification accuracy, Mean Squared Error (MSE), Area under Receiver Operating Characteristics (ROC) curve, and computational efficiency. Computer simulations demonstrated that the MNN (Topology II) classifier, specifically when trained with FFT coefficients and a momentum learning rule, consistently achieved 100% average classification accuracy on the cross-validation dataset for both Data-base I and Data-base II, outperforming MLP-based classifiers. This genetically optimized and trained MNN (Topology II) classifier is therefore recommended as the optimal solution for lung cancer diagnosis from CT scan images.
Page 1 of 220 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.