Sort by:
Page 1 of 323 results
Next

Bayesian machine learning enables discovery of risk factors for hepatosplenic multimorbidity related to schistosomiasis

Zhi, Y.-C., Anguajibi, V., Oryema, J. B., Nabatte, B., Opio, C. K., Kabatereine, N. B., Chami, G. F.

medrxiv logopreprintSep 19 2025
One in 25 deaths worldwide is related to liver disease, and often with multiple hepatosplenic conditions. Yet, little is understood of the risk factors for hepatosplenic multimorbidity, especially in the context of chronic infections. We present a novel Bayesian multitask learning framework to jointly model 45 hepatosplenic conditions assessed using point-of-care B-mode ultrasound for 3155 individuals aged 5-91 years within the SchistoTrack cohort across rural Uganda where chronic intestinal schistosomiasis is endemic. We identified distinct and shared biomedical, socioeconomic, and spatial risk factors for individual conditions and hepatosplenic multimorbidity, and introduced methods for measuring condition dependencies as risk factors. Notably, for gastro-oesophageal varices, we discovered key risk factors of older age, lower hemoglobin concentration, and severe schistosomal liver fibrosis. Our findings provide a compendium of risk factors to inform surveillance, triage, and follow-up, while our model enables improved prediction of hepatosplenic multimorbidity, and if validated on other systems, general multimorbidity.

Accuracy of Foundation AI Models for Hepatic Macrovesicular Steatosis Quantification in Frozen Sections

Koga, S., Guda, A., Wang, Y., Sahni, A., Wu, J., Rosen, A., Nield, J., Nandish, N., Patel, K., Goldman, H., Rajapakse, C., Walle, S., Kristen, S., Tondon, R., Alipour, Z.

medrxiv logopreprintSep 17 2025
IntroductionAccurate intraoperative assessment of macrovesicular steatosis in donor liver biopsies is critical for transplantation decisions but is often limited by inter-observer variability and freezing artifacts that can obscure histological details. Artificial intelligence (AI) offers a potential solution for standardized and reproducible evaluation. To evaluate the diagnostic performance of two self-supervised learning (SSL)-based foundation models, Prov-GigaPath and UNI, for classifying macrovesicular steatosis in frozen liver biopsy sections, compared with assessments by surgical pathologists. MethodsWe retrospectively analyzed 131 frozen liver biopsy specimens from 68 donors collected between November 2022 and September 2024. Slides were digitized into whole-slide images, tiled into patches, and used to extract embeddings with Prov-GigaPath and UNI; slide-level classifiers were then trained and tested. Intraoperative diagnoses by on-call surgical pathologists were compared with ground truth determined from independent reviews of permanent sections by two liver pathologists. Accuracy was evaluated for both five-category classification and a clinically significant binary threshold (<30% vs. [&ge;]30%). ResultsFor binary classification, Prov-GigaPath achieved 96.4% accuracy, UNI 85.7%, and surgical pathologists 84.0% (P = .22). In five-category classification, accuracies were lower: Prov-GigaPath 57.1%, UNI 50.0%, and pathologists 58.7% (P = .70). Misclassification primarily occurred in intermediate categories (5%-<30% steatosis). ConclusionsSSL-based foundation models performed comparably to surgical pathologists in classifying macrovesicular steatosis, at the clinically relevant <30% vs. [&ge;]30% threshold. These findings support the potential role of AI in standardizing intraoperative evaluation of donor liver biopsies; however, the small sample size limits generalizability and requires validation in larger, balanced cohorts.

Radiologist-AI Collaboration for Ischemia Diagnosis in Small Bowel Obstruction: Multicentric Development and External Validation of a Multimodal Deep Learning Model

Vanderbecq, Q., Xia, W. F., Chouzenoux, E., Pesquet, J.-c., Zins, M., Wagner, M.

medrxiv logopreprintSep 8 2025
PurposeTo develop and externally validate a multimodal AI model for detecting ischaemia complicating small-bowel obstruction (SBO). MethodsWe combined 3D CT data with routine laboratory markers (C-reactive protein, neutrophil count) and, optionally, radiology report text. From two centers, 1,350 CT examinations were curated; 771 confirmed SBO scans were used for model development with patient-level splits. Ischemia labels were defined by surgical confirmation within 24 hours of imaging. Models (MViT, ResNet-101, DaViT) were trained as unimodal and multimodal variants. External testing was used for 66 independent cases from a third center. Two radiologists (attending, resident) read the test set with and without AI assistance. Performance was assessed using AUC, sensitivity, specificity, and 95% bootstrap confidence intervals; predictions included a confidence score. ResultsThe image-plus-laboratory model performed best on external testing (AUC 0.69 [0.59-0.79], sensitivity 0.89 [0.76-1.00], and specificity 0.44 [0.35-0.54]). Adding report text improved internal validation but did not generalize externally; image+text and full multimodal variants did not exceed image+laboratory performance. Without AI, the attending outperformed the resident (AUC 0.745 [0.617-0.845] vs 0.706 [0.581-0.818]); with AI, both improved, attending 0.752 [0.637-0.853] and resident 0.752 [0.629-0.867], rising to 0.750 [0.631-0.839] and 0.773 [0.657-0.867] with confidence display; differences were not statistically significant. ConclusionA multimodal AI that combines CT images with routine laboratory markers outperforms single-modality approaches and boosts radiologist readers performance notably junior, supporting earlier, more consistent decisions within the first 24 hours. Key PointsA multimodal artificial intelligence (AI) model that combines CT images with laboratory markers detected ischemia in small-bowel obstruction with AUC 0.69 (95% CI 0.59-0.79) and sensitivity 0.89 (0.76-1.00) on external testing, outperforming single-modality models. Adding report text did not generalize across sites: the image+text model fell from AUC 0.82 (internal) to 0.53 (external), and adding text to image+biology left external AUC unchanged (0.69) with similar specificity (0.43-0.44). With AI assistance both junior and senior readers improved; the juniors AUC rose from 0.71 to 0.77, reaching senior-level performance. Summary StatementA multicentric AI model combining CT and routine laboratory data (CRP and neutrophilia) improved radiologists detection of ischemia in small-bowel obstruction. This tool supports earlier decision-making within the first 24 hours.

Decoding Fibrosis: Transcriptomic and Clinical Insights via AI-Derived Collagen Deposition Phenotypes in MASLD

Wojciechowska, M. K., Thing, M., Hu, Y., Mazzoni, G., Harder, L. M., Werge, M. P., Kimer, N., Das, V., Moreno Martinez, J., Prada-Medina, C. A., Vyberg, M., Goldin, R., Serizawa, R., Tomlinson, J., Douglas Gaalsgard, E., Woodcock, D. J., Hvid, H., Pfister, D. R., Jurtz, V. I., Gluud, L.-L., Rittscher, J.

medrxiv logopreprintSep 2 2025
Histological assessment is foundational to multi-omics studies of liver disease, yet conventional fibrosis staging lacks resolution, and quantitative metrics like collagen proportionate area (CPA) fail to capture tissue architecture. While recent AI-driven approaches offer improved precision, they are proprietary and not accessible to academic research. Here, we present a novel, interpretable AI-based framework for characterising liver fibrosis from picrosirius red (PSR)-stained slides. By identifying distinct data-driven collagen deposition phenotypes (CDPs) which capture distinct morphologies, our method substantially improves the sensitivity and specificity of downstream transcriptomic and proteomic analyses compared to CPA and traditional fibrosis scores. Pathway analysis reveals that CDPs 4 and 5 are associated with active extracellular matrix remodelling, while phenotype correlates highlight links to liver functional status. Importantly, we demonstrate that selected CDPs can predict clinical outcomes with similar accuracy to established fibrosis metrics. All models and tools are made freely available to support transparent and reproducible multi-omics pathology research. HighlightsO_LIWe present a set of data-driven collagen deposition phenotypes for analysing PSR-stained liver biopsies, offering a spatially informed alternative to conventional fibrosis staging and CPA available as open-source code. C_LIO_LIThe identified collagen deposition phenotypes enhance transcriptomic and proteomic signal detection, revealing active ECM remodelling and distinct functional tissue states. C_LIO_LISelected phenotypes predict clinical outcomes with performance comparable to fibrosis stage and CPA, highlighting their potential as candidate quantitative indicators of fibrosis severity. C_LI O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=98 SRC="FIGDIR/small/25334719v1_ufig1.gif" ALT="Figure 1"> View larger version (22K): [email protected]@1793532org.highwire.dtl.DTLVardef@93a0d8org.highwire.dtl.DTLVardef@24d289_HPS_FORMAT_FIGEXP M_FIG C_FIG

Automated biometry for assessing cephalopelvic disproportion in 3D 0.55T fetal MRI at term

Uus, A., Bansal, S., Gerek, Y., Waheed, H., Neves Silva, S., Aviles Verdera, J., Kyriakopoulou, V., Betti, L., Jaufuraully, S., Hajnal, J. V., Siasakos, D., David, A., Chandiramani, M., Hutter, J., Story, L., Rutherford, M.

medrxiv logopreprintAug 21 2025
Fetal MRI offers detailed three-dimensional visualisation of both fetal and maternal pelvic anatomy, allowing for assessment of the risk of cephalopelvic disproportion and obstructed labour. However, conventional measurements of fetal and pelvic proportions and their relative positioning are typically performed manually in 2D, making them time-consuming, subject to inter-observer variability, and rarely integrated into routine clinical workflows. In this work, we present the first fully automated pipeline for pelvic and fetal head biometry in T2-weighted fetal MRI at late gestation. The method employs deep learning-based localisation of anatomical landmarks in 3D reconstructed MRI images, followed by computation of 12 standard linear and circumference measurements commonly used in the assessment of cephalopelvic disproportion. Landmark detection is based on 3D UNet models within MONAI framework, trained on 57 semi-manually annotated datasets. The full pipeline is quantitatively validated on 10 test cases. Furthermore, we demonstrate its clinical feasibility and relevance by applying it to 206 fetal MRI scans (36-40 weeks gestation) from the MiBirth study, which investigates prediction of mode of delivery using low field MRI.

A Case Study on Colposcopy-Based Cervical Cancer Staging Reveals an Alarming Lack of Data Sharing Hindering the Adoption of Machine Learning in Clinical Practice

Schulz, M., Leha, A.

medrxiv logopreprintAug 15 2025
BackgroundThe inbuilt ability to adapt existing models to new applications has been one of the key drivers of the success of deep learning models. Thereby, sharing trained models is crucial for their adaptation to different populations and domains. Not sharing models prohibits validation and potentially following translation into clinical practice, and hinders scientific progress. In this paper we examine the current state of data and model sharing in the medical field using cervical cancer staging on colposcopy images as a case example. MethodsWe conducted a comprehensive literature search in PubMed to identify studies employing machine learning techniques in the analysis of colposcopy images. For studies where raw data was not directly accessible, we systematically inquired about accessing the pre-trained model weights and/or raw colposcopy image data by contacting the authors using various channels. ResultsWe included 46 studies and one publicly available dataset in our study. We retrieved data of the latter and inquired about data access for the 46 studies by contacting a total of 92 authors. We received 15 responses related to 14 studies (30%). The remaining 32 studies remained unresponsive (70%). Of the 15 responses received, two responses redirected our inquiry to other authors, two responses were initially pending, and 11 declined data sharing. Despite our follow-up efforts on all responses received, none of the inquiries led to actual data sharing (0%). The only available data source remained the publicly available dataset. ConclusionsDespite the long-standing demands for reproducible research and efforts to incentivize data sharing, such as the requirement of data availability statements, our case study reveals a persistent lack of data sharing culture. Reasons identified in this case study include a lack of resources to provide the data, data privacy concerns, ongoing trial registrations and low response rates to inquiries. Potential routes for improvement could include comprehensive data availability statements required by journals, data preparation and deposition in a repository as part of the publication process, an automatic maximal embargo time after which data will become openly accessible and data sharing rules set by funders.

Using deep learning methods to shorten acquisition time in children's renal cortical imaging

Gan, C., Niu, P., Pan, B., Chen, X., Xu, L., Huang, K., Chen, H., Wang, Q., Ding, L., Yin, Y., Wu, S., Gong, N.-j.

medrxiv logopreprintAug 13 2025
PurposeThis study evaluates the capability of diffusion-based generative models to reconstruct diagnostic-quality renal cortical images from reduced-acquisition-time pediatric 99mTc-DMSA scintigraphy. Materials and MethodsA prospective study was conducted on 99mTc-DMSA scintigraphic data from consecutive pediatric patients with suspected urinary tract infections (UTIs) acquired between November 2023 and October 2024. A diffusion model SR3 was trained to reconstruct standard-quality images from simulated reduced-count data. Performance was benchmarked against U-Net, U2-Net, Restormer, and a Poisson-based variant of SR3 (PoissonSR3). Quantitative assessment employed peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), Frechet inception distance (FID), and learned perceptual image patch similarity (LPIPS). Renal contrast and anatomic fidelity were assessed using the target-to-background ratio (TBR) and the Dice similarity coefficient respectively. Wilcoxon signed-rank tests were used for statistical analysis. ResultsThe training cohort comprised 94 participants (mean age 5.16{+/-}3.90 years; 48 male) with corresponding Poisson-downsampled images, while the test cohort included 36 patients (mean age 6.39{+/-}3.16 years; 14 male). SR3 outperformed all models, achieving the highest PSNR (30.976{+/-}2.863, P<.001), SSIM (0.760{+/-}0.064, P<.001), FID (25.687{+/-}16.223, P<.001), and LPIPS (0.055{+/-}0.022, P<.001). Further, SR3 maintained excellent renal contrast (TBR: left kidney 7.333{+/-}2.176; right kidney 7.156{+/-}1.808) and anatomical consistency (Dice coefficient: left kidney 0.749{+/-}0.200; right kidney 0.745{+/-}0.176), representing significant improvements over the fast scan (all P < .001). While Restormer, U-Net, and PoissonSR3 showed statistically significant improvements across all metrics, U2-Net exhibited limited improvement restricted to SSIM and left kidney TBR (P < .001). ConclusionSR3 enables high-quality reconstruction of 99mTc-DMSA images from 4-fold accelerated acquisitions, demonstrating potential for substantial reduction in imaging duration while preserving both diagnostic image quality and renal anatomical integrity.

Artificial Intelligence quantified prostate specific membrane antigen imaging in metastatic castrate-resistant prostate cancer patients treated with Lutetium-177-PSMA-617

Yu, S. L., Wang, X., Wen, S., Holler, S., Bodkin, M., Kolodney, J., Najeeb, S., Hogan, T.

medrxiv logopreprintAug 12 2025
PURPOSEThe VISION study1 found that Lutetium-177 (177Lu)-PSMA-617 ("Lu-177") improved overall survival in metastatic castrate resistant prostate cancer (mCRPC). We assessed whether artificial intelligence enhanced PSMA imaging in mCRPC patients starting Lu-177 could identify those with better treatment outcomes. PATIENTS AND METHODSWe conducted a single site, tertiary center, retrospective cohort study in 51 consecutive mCRPC patients treated 2022-2024 with Lu-177. These patients had received most standard treatments, with disease progression. Planned treatment was Lu-177 every 6 weeks while continuing androgen deprivation therapy. Before starting treatment, PSMA images were analyzed for SUVmax and quantified tumor volume using artificial intelligence software (aPROMISE, Exinni Inc.). RESULTSFifty-one mCRPC patients were treated with Lu-177; 33 (65%) received 4 or more treatment cycles and these 33 had Kaplan-Meier median overall survival (OS) of 19.3 months and 23 (70%) surviving at 24 month data analysis. At first cycle Lu-177, these 33 had significantly more favorable levels of serum albumin, alkaline phosphatase, calcium, glucose, prostate specific antigen (PSA), ECOG performance status, and F18 PSMA imaging SUV-maximum values - reflecting PSMA "target expression". In a "protocol-eligibility" analysis, 30 of the 51 patients (59%) were considered "protocol-eligible" and 21 (41%) "protocol-ineligible" based on initial clinical parameters, as defined in Methods. "Protocol-eligible" patients had OS of 14.6 mo and 63% survival at 24 months. AI-enhanced F18 PSMA quantified imaging found "protocol-eligible" tumor volume in mL to be only 39% of the volume in "ineligible" patients. CONCLUSIONIn this cohort of mCRPC patients receiving Lu-177, pre-treatment AI-assisted F18 PSMA imaging finding higher PSMA SUV / lower tumor volume associated with the patients ability to have four or more treatment cycles, protocol eligibility, and better overall survival. KEY POINTSO_ST_ABSQuestionC_ST_ABSIn mCRPC patients initiating Lu-177 therapy, can AI-assisted F18 PSMA imaging identify patients who have better treatment outomes? Findings33 (65%) of a 51 consecutive patient mCRPC cohort were able to receive 4 or more cycles Lu-177. These patients had significantly more favorable serum albumin, alkaline phosphatase, calcium, glucose, PSA, performance status, and higher AI-PSMA scan SUV-maximum values, with a trend toward lower PSMA tumor volumes in mL. They had Kaplan-Meier median OS of 19.3 months and 70% survived at 24 months. AI-enhanced PSMA tumor volumes (mL) in "protocol eligible" patients were significantly lower - only 40% - than tumor volumes of "protocol ineligible" patients. MeaningIn this cohort of mCRPC patients receiving Lu-177, pre-treatment AI-assisted F18 PSMA imaging finding higher PSMA SUV / lower tumor volume associated with the patients ability to have four or more treatment cycles, protocol eligibility, and better overall survival.

A Systematic Review of Multimodal Deep Learning and Machine Learning Fusion Techniques for Prostate Cancer Classification

Manzoor, F., Gupta, V., Pinky, L., Wang, Z., Chen, Z., Deng, Y., Neupane, S.

medrxiv logopreprintAug 11 2025
Prostate cancer remains one of the most prevalent malignancies and a leading cause of cancer-related deaths among men worldwide. Despite advances in traditional diagnostic methods such as Prostate-specific antigen testing, digital rectal examination, and multiparametric Magnetic resonance imaging, these approaches remain constrained by modality-specific limitations, suboptimal sensitivity and specificity, and reliance on expert interpretation, which may introduce diagnostic inconsistency. Multimodal deep learning and machine learning fusion, which integrates diverse data sources including imaging, clinical, and molecular information, has emerged as a promising strategy to enhance the accuracy of prostate cancer classification. This review aims to outline the current state-of-the-art deep learning and machine learning based fusion techniques for prostate cancer classification, focusing on their implementation, performance, challenges, and clinical applicability. Following the PRISMA guidelines, a total of 131 studies were identified, of which 27 met the inclusion criteria for studies published between 2021 and 2025. Extracted data included input techniques, deep learning architectures, performance metrics, and validation approaches. The majority of the studies used an early fusion approach with convolutional neural networks to integrate the data. Clinical and imaging data were the most commonly used modalities in the reviewed studies for prostate cancer research. Overall, multimodal deep learning and machine learning-based fusion significantly advances prostate cancer classification and outperform unimodal approaches.

Interpretable Deep Learning Approaches for Reliable GI Image Classification: A Study with the HyperKvasir Dataset

Wahid, S. B., Rothy, Z. T., News, R. K., Rieyan, S. A.

medrxiv logopreprintJul 23 2025
Deep learning has emerged as a promising tool for automating gastrointestinal (GI) disease diagnosis. However, multi-class GI disease classification remains underexplored. This study addresses this gap by presenting a framework that uses advanced models like InceptionNetV3 and ResNet50, combined with boosting algorithms (XGB, LGBM), to classify lower GI abnormalities. InceptionNetV3 with XGB achieved the best recall of 0.81 and an F1 score of 0.90. To assist clinicians in understanding model decisions, the Grad-CAM technique, a form of explainable AI, was employed to highlight the critical regions influencing predictions, fostering trust in these systems. This approach significantly improves both the accuracy and reliability of GI disease diagnosis.
Page 1 of 323 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.