UltimateSynth: MRI Physics for Pan-Contrast AI
Adams, R., Huynh, K. M., Zhao, W., Hu, S., Lyu, W., Ahmad, S., Ma, D., Yap, P.-T.
Magnetic resonance imaging (MRI) is commonly used in healthcare for its ability to generate diverse tissue contrasts without ionizing radiation. However, this flexibility complicates downstream analysis, as computational tools are often tailored to specific types of MRI and lack generalizability across the full spectrum of scans used in healthcare. Here, we introduce a versatile framework for the development and validation of AI models that can robustly process and analyze the full spectrum of scans achievable with MRI, enabling model deployment across scanner models, scan sequences, and age groups. Core to our framework is UltimateSynth, a technology that combines tissue physiology and MR physics in synthesizing realistic images across a comprehensive range of meaningful contrasts. This pan-contrast capability bolsters the AI development life cycle through efficient data labeling, generalizable model training, and thorough performance benchmarking. We showcase the effectiveness of UltimateSynth by training an off-the-shelf U-Net to generalize anatomical segmentation across any MR contrast. The U-Net yields highly robust tissue volume estimates, with variability under 4% across 150,000 unique-contrast images, 3.8% across 2,000+ low-field 0.3T scans, and 3.5% across 8,000+ images spanning the human lifespan from ages 0 to 100.