Sort by:
Page 1 of 24235 results
Next
You are viewing papers added to our database from 2025-08-11 to 2025-08-17.View all papers

Artificial intelligence across the cancer care continuum.

Riaz IB, Khan MA, Osterman TJ

pubmed logopapersAug 15 2025
Artificial intelligence (AI) holds significant potential to enhance various aspects of oncology, spanning the cancer care continuum. This review provides an overview of current and emerging AI applications, from risk assessment and early detection to treatment and supportive care. AI-driven tools are being developed to integrate diverse data sources, including multi-omics and electronic health records, to improve cancer risk stratification and personalize prevention strategies. In screening and diagnosis, AI algorithms show promise in augmenting the accuracy and efficiency of medical image analysis and histopathology interpretation. AI also offers opportunities to refine treatment planning, optimize radiation therapy, and personalize systemic therapy selection. Furthermore, AI is explored for its potential to improve survivorship care by tailoring interventions and to enhance end-of-life care through improved symptom management and prognostic modeling. Beyond care delivery, AI augments clinical workflows, streamlines the dissemination of up-to-date evidence, and captures critical patient-reported outcomes for clinical decision support and outcomes assessment. However, the successful integration of AI into clinical practice requires addressing key challenges, including rigorous validation of algorithms, ensuring data privacy and security, and mitigating potential biases. Effective implementation necessitates interdisciplinary collaboration and comprehensive education for health care professionals. The synergistic interaction between AI and clinical expertise is crucial for realizing the potential of AI to contribute to personalized and effective cancer care. This review highlights the current state of AI in oncology and underscores the importance of responsible development and implementation.

Recommendations for the use of functional medical imaging in the management of cancer of the cervix in New Zealand: a rapid review.

Feng S, Mdletshe S

pubmed logopapersAug 15 2025
We aimed to review the role of functional imaging in cervical cancer to underscore its significance in the diagnosis and management of cervical cancer and in improving patient outcomes. This rapid literature review targeting the clinical guidelines for functional imaging in cervical cancer sourced literature from 2017 to 2023 using PubMed, Google Scholar, MEDLINE and Scopus. Keywords such as cervical cancer, cervical neoplasms, functional imaging, stag*, treatment response, monitor* and New Zealand or NZ were used with Boolean operators to maximise results. Emphasis was on English full research studies pertinent to New Zealand. The study quality of the reviewed articles was assessed using the Joanna Briggs Institute critical appraisal checklists. The search yielded a total of 21 papers after all duplicates and yields that did not meet the inclusion criteria were excluded. Only one paper was found to incorporate the New Zealand context. The papers reviewed yielded results that demonstrate the important role of functional imaging in cervical cancer diagnosis, staging and treatment response monitoring. Techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), diffusion-weighted magnetic resonance imaging (DW-MRI), computed tomography perfusion (CTP) and positron emission tomography computed tomography (PET/CT) provide deep insights into tumour behaviour, facilitating personalised care. Integration of artificial intelligence in image analysis promises increased accuracy of these modalities. Functional imaging could play a significant role in a unified approach in New Zealand to improve patient outcomes for cervical cancer management. Therefore, this study advocates for New Zealand's medical sector to harness functional imaging's potential in cervical cancer management.

Determination of Skeletal Age From Hand Radiographs Using Deep Learning.

Bram JT, Pareek A, Beber SA, Jones RH, Shariatnia MM, Daliliyazdi A, Tracey OC, Green DW, Fabricant PD

pubmed logopapersAug 15 2025
Surgeons treating skeletally immature patients use skeletal age to determine appropriate surgical strategies. Traditional bone age estimation methods utilizing hand radiographs are time-consuming. To develop highly accurate/reliable deep learning (DL) models for determination of accurate skeletal age from hand radiographs. Cohort Study. The authors utilized 3 publicly available hand radiograph data sets for model development/validation from (1) the Radiological Society of North America (RSNA), (2) the Radiological Hand Pose Estimation (RHPE) data set, and (3) the Digital Hand Atlas (DHA). All 3 data sets report corresponding sex and skeletal age. The RHPE and DHA also contain chronological age. After image preprocessing, a ConvNeXt model was trained first on the RSNA data set using sex/skeletal age as inputs using 5-fold cross-validation, with subsequent training on the RHPE with addition of chronological age. Final model validation was performed on the DHA and an institutional data set of 200 images. The first model, trained on the RSNA, achieved a mean absolute error (MAE) of 3.68 months on the RSNA test set and 5.66 months on the DHA. This outperformed the 4.2 months achieved on the RSNA test set by the best model from previous work (12.4% improvement) and 3.9 months by the open-source software Deeplasia (5.6% improvement). After incorporation of chronological age from the RHPE in model 2, this error improved to an MAE of 4.65 months on the DHA, again surpassing the best previously published models (19.8% improvement). Leveraging newer DL technologies trained on >20,000 hand radiographs across 3 distinct, diverse data sets, this study developed a robust model for predicting bone age. Utilizing features extracted from an RSNA model, combined with chronological age inputs, this model outperforms previous state-of-the-art models when applied to validation data sets. These results indicate that the models provide a highly accurate/reliable platform for clinical use to improve confidence about appropriate surgical selection (eg, physeal-sparing procedures) and time savings for orthopaedic surgeons/radiologists evaluating skeletal age. Development of an accurate DL model for determination of bone age from the hand reduces the time required for age estimation. Additionally, streamlined skeletal age estimation can aid practitioners in determining optimal treatment strategies and may be useful in research settings to decrease workload and improve reporting.

URFM: A general Ultrasound Representation Foundation Model for advancing ultrasound image diagnosis.

Kang Q, Lao Q, Gao J, Bao W, He Z, Du C, Lu Q, Li K

pubmed logopapersAug 15 2025
Ultrasound imaging is critical for clinical diagnostics, providing insights into various diseases and organs. However, artificial intelligence (AI) in this field faces challenges, such as the need for large labeled datasets and limited task-specific model applicability, particularly due to ultrasound's low signal-to-noise ratio (SNR). To overcome these, we introduce the Ultrasound Representation Foundation Model (URFM), designed to learn robust, generalizable representations from unlabeled ultrasound images, enabling label-efficient adaptation to diverse diagnostic tasks. URFM is pre-trained on over 1M images from 15 major anatomical organs using representation-based masked image modeling (MIM), an advanced self-supervised learning. Unlike traditional pixel-based MIM, URFM integrates high-level representations from BiomedCLIP, a specialized medical vision-language model, to address the low SNR issue. Extensive evaluation shows that URFM outperforms state-of-the-art methods, offering enhanced generalization, label efficiency, and training-time efficiency. URFM's scalability and flexibility signal a significant advancement in diagnostic accuracy and clinical workflow optimization in ultrasound imaging.

Enhancing Diagnostic Accuracy of Fresh Vertebral Compression Fractures With Deep Learning Models.

Li KY, Ye HB, Zhang YL, Huang JW, Li HL, Tian NF

pubmed logopapersAug 15 2025
Retrospective study. The study aimed to develop and authenticated a deep learning model based on X-ray images to accurately diagnose fresh thoracolumbar vertebral compression fractures. In clinical practice, diagnosing fresh vertebral compression fractures often requires MRI. However, due to the scarcity of MRI resources and the high time and economic costs involved, some patients may not receive timely diagnosis and treatment. Using a deep learning model combined with X-rays for diagnostic assistance could potentially serve as an alternative to MRI. In this study, the main collection included X-ray images suspected of thoracolumbar vertebral compression fractures from the municipal shared database between December 2012 and February 2024. Deep learning models were constructed using frameworks of EfficientNet, MobileNet, and MnasNet, respectively. We conducted a preliminary evaluation of the deep learning model using the validation set. The diagnostic performance of the models was evaluated using metrics such as AUC value, accuracy, sensitivity, specificity, F1 score, precision, and ROC curve. Finally, the deep learning models were compared with evaluations from two spine surgeons of different experience levels on the control set. This study included a total of 3025 lateral X-ray images from 2224 patients. The data set was divided into a training set of 2388 cases, a validation set of 482 cases, and a control set of 155 cases. In the validation set, the three groups of DL models had accuracies of 83.0%, 82.4%, and 82.2%, respectively. The AUC values were 0.861, 0.852, and 0.865, respectively. In the control set, the accuracies of the three groups of DL models were 78.1%, 78.1%, and 80.7%, respectively, all higher than spinal surgeons and significantly higher than junior spine surgeon. This study developed deep learning models for detecting fresh vertebral compression fractures, demonstrating high accuracy.

Aortic atherosclerosis evaluation using deep learning based on non-contrast CT: A retrospective multi-center study.

Yang M, Lyu J, Xiong Y, Mei A, Hu J, Zhang Y, Wang X, Bian X, Huang J, Li R, Xing X, Su S, Gao J, Lou X

pubmed logopapersAug 15 2025
Non-contrast CT (NCCT) is widely used in clinical practice and holds potential for large-scale atherosclerosis screening, yet its application in detecting and grading aortic atherosclerosis remains limited. To address this, we propose Aortic-AAE, an automated segmentation system based on a cascaded attention mechanism within the nnU-Net framework. The cascaded attention module enhances feature learning across complex anatomical structures, outperforming existing attention modules. Integrated preprocessing and post-processing ensure anatomical consistency and robustness across multi-center data. Trained on 435 labeled NCCT scans from three centers and validated on 388 independent cases, Aortic-AAE achieved 81.12% accuracy in aortic stenosis classification and 92.37% in Agatston scoring of calcified plaques, surpassing five state-of-the-art models. This study demonstrates the feasibility of using deep learning for accurate detection and grading of aortic atherosclerosis from NCCT, supporting improved diagnostic decisions and enhanced clinical workflows.

Aphasia severity prediction using a multi-modal machine learning approach.

Hu X, Varkanitsa M, Kropp E, Betke M, Ishwar P, Kiran S

pubmed logopapersAug 15 2025
The present study examined an integrated multiple neuroimaging modality (T1 structural, Diffusion Tensor Imaging (DTI), and resting-state FMRI (rsFMRI)) to predict aphasia severity using Western Aphasia Battery-Revised Aphasia Quotient (WAB-R AQ) in 76 individuals with post-stroke aphasia. We employed Support Vector Regression (SVR) and Random Forest (RF) models with supervised feature selection and a stacked feature prediction approach. The SVR model outperformed RF, achieving an average root mean square error (RMSE) of 16.38±5.57, Pearson's correlation coefficient (r) of 0.70±0.13, and mean absolute error (MAE) of 12.67±3.27, compared to RF's RMSE of 18.41±4.34, r of 0.66±0.15, and MAE of 14.64±3.04. Resting-state neural activity and structural integrity emerged as crucial predictors of aphasia severity, appearing in the top 20% of predictor combinations for both SVR and RF. Finally, the feature selection method revealed that functional connectivity in both hemispheres and between homologous language areas is critical for predicting language outcomes in patients with aphasia. The statistically significant difference in performance between the model using only single modality and the optimal multi-modal SVR/RF model (which included both resting-state connectivity and structural information) underscores that aphasia severity is influenced by factors beyond lesion location and volume. These findings suggest that integrating multiple neuroimaging modalities enhances the prediction of language outcomes in aphasia beyond lesion characteristics alone, offering insights that could inform personalized rehabilitation strategies.

Machine learning based differential diagnosis of schizophrenia, major depression disorder and bipolar disorder using structural magnetic resonance imaging.

Cao P, Li R, Li Y, Dong Y, Tang Y, Xu G, Si Q, Chen C, Chen L, Liu W, Yao Y, Sui Y, Zhang J

pubmed logopapersAug 15 2025
Cortical morphological abnormalities in schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD) have been identified in past research. However, their potential as objective biomarkers to differentiate these disorders remains uncertain. Machine learning models may offer a novel diagnostic tool. Structural MRI (sMRI) of 220 SCZ, 220 MDD, 220 BD, and 220 healthy controls were obtained using a 3T scanner. Volume, thickness, surface area, and mean curvature of 68 cerebral cortices were extracted using FreeSurfer. 272 features underwent 3 feature selection techniques to isolate important variables for model construction. These features were incorporated into 3 classifiers for classification. After model evaluation and hyperparameter tuning, the best-performing model was identified, along with the most significant brain measures. The univariate feature selection-Naive Bayes model achieved the best performance, with an accuracy of 0.66, macro-average AUC of 0.86, and sensitivities and specificities ranging from 0.58-0.86 to 0.81-0.93, respectively. Key features included thickness of right isthmus-cingulate cortex, area of left inferior temporal gyrus, thickness of right superior temporal gyrus, mean curvature of right pars orbitalis, thickness of left transverse temporal cortex, volume of left caudal anterior-cingulate cortex, area of right banks superior temporal sulcus, and thickness of right temporal pole. The machine learning model based on sMRI data shows promise for aiding in the differential diagnosis of SCZ, MDD, and BD. Cortical features from the cingulate and temporal lobes may highlight distinct biological mechanisms underlying each disorder.

AI-Driven Integrated System for Burn Depth Prediction With Electronic Medical Records: Algorithm Development and Validation.

Rahman MM, Masry ME, Gnyawali SC, Xue Y, Gordillo G, Wachs JP

pubmed logopapersAug 15 2025
Burn injuries represent a significant clinical challenge due to the complexity of accurately assessing burn depth, which directly influences the course of treatment and patient outcomes. Traditional diagnostic methods primarily rely on visual inspection by experienced burn surgeons. Studies report diagnostic accuracies of around 76% for experts, dropping to nearly 50% for less experienced clinicians. Such inaccuracies can result in suboptimal clinical decisions-delaying vital surgical interventions in severe cases or initiating unnecessary treatments for superficial burns. This diagnostic variability not only compromises patient care but also strains health care resources and increases the likelihood of adverse outcomes. Hence, a more consistent and precise approach to burn classification is urgently needed. The objective is to determine whether a multimodal integrated artificial intelligence (AI) system for accurate classification of burn depth can preserve diagnostic accuracy and provide an important resource when used as part of the electronic medical record (EMR). This study used a novel multimodal AI system, integrating digital photographs and ultrasound tissue Doppler imaging (TDI) data to accurately assess burn depth. These imaging modalities were accessed and processed through an EMR system, enabling real-time data retrieval and AI-assisted evaluation. TDI was instrumental in evaluating the biomechanical properties of subcutaneous tissues, using color-coded images to identify burn-induced changes in tissue stiffness and elasticity. The collected imaging data were uploaded to the EMR system (DrChrono), where they were processed by a vision-language model built on GPT-4 architecture. This model received expert-formulated prompts describing how to interpret both digital and TDI images, guiding the AI in making explainable classifications. This study evaluated whether a multimodal AI classifier, designed to identify first-, second-, and third-degree burns, could be effectively applied to imaging data stored within an EMR system. The classifier achieved an overall accuracy of 84.38%, significantly surpassing human performance benchmarks typically cited in the literature. This highlights the potential of the AI model to serve as a robust clinical decision support tool, especially in settings lacking highly specialized expertise. In addition to accuracy, the classifier demonstrated strong performance across multiple evaluation metrics. The classifier's ability to distinguish between burn severities was further validated by the area under the receiver operating characteristic: 0.97 for first-degree, 0.96 for second-degree, and a perfect 1.00 for third-degree burns, each with narrow 95% CIs. The storage of multimodal imaging data within the EMR, along with the ability for post hoc analysis by AI algorithms, offers significant advancements in burn care, enabling real-time burn depth prediction on currently available data. Using digital photos for superficial burns, easily diagnosed through physical examinations, reduces reliance on TDI, while TDI helps distinguish deep second- and third-degree burns, enhancing diagnostic efficiency.

Prospective validation of an artificial intelligence assessment in a cohort of applicants seeking financial compensation for asbestosis (PROSBEST).

Smesseim I, Lipman KBWG, Trebeschi S, Stuiver MM, Tissier R, Burgers JA, de Gooijer CJ

pubmed logopapersAug 15 2025
Asbestosis, a rare pneumoconiosis marked by diffuse pulmonary fibrosis, arises from prolonged asbestos exposure. Its diagnosis, guided by the Helsinki criteria, relies on exposure history, clinical findings, radiology, and lung function. However, interobserver variability complicates diagnoses and financial compensation. This study prospectively validated the sensitivity of an AI-driven assessment for asbestosis compensation in the Netherlands. Secondary objectives included evaluating specificity, accuracy, predictive values, area under the curve of the receiver operating characteristic (ROC-AUC), area under the precision-recall curve (PR-AUC), and interobserver variability. Between September 2020 and July 2022, 92 adult compensation applicants were assessed using both AI models and pulmonologists' reviews based on Dutch Health Council criteria. The AI model assigned an asbestosis probability score: negative (< 35), uncertain (35-66), or positive (≥ 66). Uncertain cases underwent additional reviews for a final determination. The AI assessment demonstrated sensitivity of 0.86 (95% confidence interval: 0.77-0.95), specificity of 0.85 (0.76-0.97), accuracy of 0.87 (0.79-0.93), ROC-AUC of 0.92 (0.84-0.97), and PR-AUC of 0.95 (0.89-0.99). Despite strong metrics, the sensitivity target of 98% was unmet. Pulmonologist reviews showed moderate to substantial interobserver variability. The AI-driven approach demonstrated robust accuracy but insufficient sensitivity for validation. Addressing interobserver variability and incorporating objective fibrosis measurements could enhance future reliability in clinical and compensation settings. The AI-driven assessment for financial compensation of asbestosis showed adequate accuracy but did not meet the required sensitivity for validation. We prospectively assessed the sensitivity of an AI-driven assessment procedure for financial compensation of asbestosis. The AI-driven asbestosis probability score underperformed across all metrics compared to internal testing. The AI-driven assessment procedure achieved a sensitivity of 0.86 (95% confidence interval: 0.77-0.95). It did not meet the predefined sensitivity target.
Page 1 of 24235 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.