Sort by:
Page 96 of 1291287 results

Accelerated deep learning-based function assessment in cardiovascular magnetic resonance.

De Santis D, Fanelli F, Pugliese L, Bona GG, Polidori T, Santangeli C, Polici M, Del Gaudio A, Tremamunno G, Zerunian M, Laghi A, Caruso D

pubmed logopapersMay 17 2025
To evaluate diagnostic accuracy and image quality of deep learning (DL) cine sequences for LV and RV parameters compared to conventional balanced steady-state free precession (bSSFP) cine sequences in cardiovascular magnetic resonance (CMR). From January to April 2024, patients with clinically indicated CMR were prospectively included. LV and RV were segmented from short-axis bSSFP and DL cine sequences. LV and RV end-diastolic volume (EDV), end-systolic volume (EDV), stroke volume (SV), ejection fraction, and LV end-diastolic mass were calculated. The acquisition time of both sequences was registered. Results were compared with paired-samples t test or Wilcoxon signed-rank test. Agreement between DL cine and bSSFP was assessed using Bland-Altman plots. Image quality was graded by two readers based on blood-to-myocardium contrast, endocardial edge definition, and motion artifacts, using a 5-point Likert scale (1 = insufficient quality; 5 = excellent quality). Sixty-two patients were included (mean age: 47 ± 17 years, 41 men). No significant differences between DL cine and bSSFP were found for all LV and RV parameters (P ≥ .176). DL cine was significantly faster (1.35 ± .55 m vs 2.83 ± .79 m; P < .001). The agreement between DL cine and bSSFP was strong, with bias ranging from 45 to 1.75% for LV and from - 0.38 to 2.43% for RV. Among LV parameters, the highest agreement was obtained for ESV and SV, which fell within the acceptable limit of agreement (LOA) in 84% of cases. EDV obtained the highest agreement among RV parameters, falling within the acceptable LOA in 90% of cases. Overall image quality was comparable (median: 5, IQR: 4-5; P = .330), while endocardial edge definition of DL cine (median: 4, IQR: 4-5) was lower than bSSFP (median: 5, IQR: 4-5; P = .002). DL cine allows fast and accurate quantification of LV and RV parameters and comparable image quality with conventional bSSFP.

Prediction of cervical spondylotic myelopathy from a plain radiograph using deep learning with convolutional neural networks.

Tachi H, Kokabu T, Suzuki H, Ishikawa Y, Yabu A, Yanagihashi Y, Hyakumachi T, Shimizu T, Endo T, Ohnishi T, Ukeba D, Sudo H, Yamada K, Iwasaki N

pubmed logopapersMay 17 2025
This study aimed to develop deep learning algorithms (DLAs) utilising convolutional neural networks (CNNs) to classify cervical spondylotic myelopathy (CSM) and cervical spondylotic radiculopathy (CSR) from plain cervical spine radiographs. Data from 300 patients (150 with CSM and 150 with CSR) were used for internal validation (IV) using five-fold cross-validation strategy. Additionally, 100 patients (50 with CSM and 50 with CSR) were included in the external validation (EV). Two DLAs were trained using CNNs on plain radiographs from C3-C6 for the binary classification of CSM and CSR, and for the prediction of the spinal canal area rate using magnetic resonance imaging. Model performance was evaluated on external data using metrics such as area under the curve (AUC), accuracy, and likelihood ratios. For the binary classification, the AUC ranged from 0.84 to 0.96, with accuracy between 78% and 95% during IV. In the EV, the AUC and accuracy were 0.96 and 90%, respectively. For the spinal canal area rate, correlation coefficients during five-fold cross-validation ranged from 0.57 to 0.64, with a mean correlation of 0.61 observed in the EV. DLAs developed with CNNs demonstrated promising accuracy for classifying CSM and CSR from plain radiographs. These algorithms have the potential to assist non-specialists in identifying patients who require further evaluation or referral to spine specialists, thereby reducing delays in the diagnosis and treatment of CSM.

AI in motion: the impact of data augmentation strategies on mitigating MRI motion artifacts.

Westfechtel SD, Kußmann K, Aßmann C, Huppertz MS, Siepmann RM, Lemainque T, Winter VR, Barabasch A, Kuhl CK, Truhn D, Nebelung S

pubmed logopapersMay 17 2025
Artifacts in clinical MRI can compromise the performance of AI models. This study evaluates how different data augmentation strategies affect an AI model's segmentation performance under variable artifact severity. We used an AI model based on the nnU-Net architecture to automatically quantify lower limb alignment using axial T2-weighted MR images. Three versions of the AI model were trained with different augmentation strategies: (1) no augmentation ("baseline"), (2) standard nnU-net augmentations ("default"), and (3) "default" plus augmentations that emulate MR artifacts ("MRI-specific"). Model performance was tested on 600 MR image stacks (right and left; hip, knee, and ankle) from 20 healthy participants (mean age, 23 ± 3 years, 17 men), each imaged five times under standardized motion to induce artifacts. Two radiologists graded each stack's artifact severity as none, mild, moderate, and severe, and manually measured torsional angles. Segmentation quality was assessed using the Dice similarity coefficient (DSC), while torsional angles were compared between manual and automatic measurements using mean absolute deviation (MAD), intraclass correlation coefficient (ICC), and Pearson's correlation coefficient (r). Statistical analysis included parametric tests and a Linear Mixed-Effects Model. MRI-specific augmentation resulted in slightly (yet not significantly) better performance than the default strategy. Segmentation quality decreased with increasing artifact severity, which was partially mitigated by default and MRI-specific augmentations (e.g., severe artifacts, proximal femur: DSC<sub>baseline</sub> = 0.58 ± 0.22; DSC<sub>default</sub> = 0.72 ± 0.22; DSC<sub>MRI-specific</sub> = 0.79 ± 0.14 [p < 0.001]). These augmentations also maintained precise torsional angle measurements (e.g., severe artifacts, femoral torsion: MAD<sub>baseline</sub> = 20.6 ± 23.5°; MAD<sub>default</sub> = 7.0 ± 13.0°; MAD<sub>MRI-specific</sub> = 5.7 ± 9.5° [p < 0.001]; ICC<sub>baseline</sub> = -0.10 [p = 0.63; 95% CI: -0.61 to 0.47]; ICC<sub>default</sub> = 0.38 [p = 0.08; -0.17 to 0.76]; ICC<sub>MRI-specific</sub> = 0.86 [p < 0.001; 0.62 to 0.95]; r<sub>baseline</sub> = 0.58 [p < 0.001; 0.44 to 0.69]; r<sub>default</sub> = 0.68 [p < 0.001; 0.56 to 0.77]; r<sub>MRI-specific</sub> = 0.86 [p < 0.001; 0.81 to 0.9]). Motion artifacts negatively impact AI models, but general-purpose augmentations enhance robustness effectively. MRI-specific augmentations offer minimal additional benefit. Question Motion artifacts negatively impact the performance of diagnostic AI models for MRI, but mitigation methods remain largely unexplored. Findings Domain-specific augmentation during training can improve the robustness and performance of a model for quantifying lower limb alignment in the presence of severe artifacts. Clinical relevance Excellent robustness and accuracy are crucial for deploying diagnostic AI models in clinical practice. Including domain knowledge in model training can benefit clinical adoption.

Feasibility of improving vocal fold pathology image classification with synthetic images generated by DDPM-based GenAI: a pilot study.

Khazrak I, Zainaee S, M Rezaee M, Ghasemi M, C Green R

pubmed logopapersMay 17 2025
Voice disorders (VD) are often linked to vocal fold structural pathologies (VFSP). Laryngeal imaging plays a vital role in assessing VFSPs and VD in clinical and research settings, but challenges like scarce and imbalanced datasets can limit the generalizability of findings. Denoising Diffusion Probabilistic Models (DDPMs), a subtype of Generative AI, has gained attention for its ability to generate high-quality and realistic synthetic images to address these challenges. This study explores the feasibility of improving VFSP image classification by generating synthetic images using DDPMs. 404 laryngoscopic images depicting VF without and with VFSP were included. DDPMs were used to generate synthetic images to augment the original dataset. Two convolutional neural network architectures, VGG16 and ResNet50, were applied for model training. The models were initially trained only on the original dataset. Then, they were trained on the augmented datasets. Evaluation metrics were analyzed to assess the performance of the models for both binary classification (with/without VFSPs) and multi-class classification (seven specific VFSPs). Realistic and high-quality synthetic images were generated for dataset augmentation. The model first failed to converge when trained only on the original dataset, but they successfully converged and achieved low loss and high accuracy when trained on the augmented datasets. The best performance was gained for both binary and multi-class classification when the models were trained on an augmented dataset. Generating realistic images of VFSP using DDPMs is feasible and can enhance the classification of VFSPs by an AI model and may support VD screening and diagnosis.

Fair ultrasound diagnosis via adversarial protected attribute aware perturbations on latent embeddings.

Xu Z, Tang F, Quan Q, Yao Q, Kong Q, Ding J, Ning C, Zhou SK

pubmed logopapersMay 17 2025
Deep learning techniques have significantly enhanced the convenience and precision of ultrasound image diagnosis, particularly in the crucial step of lesion segmentation. However, recent studies reveal that both train-from-scratch models and pre-trained models often exhibit performance disparities across sex and age attributes, leading to biased diagnoses for different subgroups. In this paper, we propose APPLE, a novel approach designed to mitigate unfairness without altering the parameters of the base model. APPLE achieves this by learning fair perturbations in the latent space through a generative adversarial network. Extensive experiments on both a publicly available dataset and an in-house ultrasound image dataset demonstrate that our method improves segmentation and diagnostic fairness across all sensitive attributes and various backbone architectures compared to the base models. Through this study, we aim to highlight the critical importance of fairness in medical segmentation and contribute to the development of a more equitable healthcare system.

MRI-based radiomics for differentiating high-grade from low-grade clear cell renal cell carcinoma: a systematic review and meta-analysis.

Broomand Lomer N, Ghasemi A, Ahmadzadeh AM, A Torigian D

pubmed logopapersMay 17 2025
High-grade clear cell renal cell carcinoma (ccRCC) is linked to lower survival rates and more aggressive disease progression. This study aims to assess the diagnostic performance of MRI-derived radiomics as a non-invasive approach for pre-operative differentiation of high-grade from low-grade ccRCC. A systematic search was conducted across PubMed, Scopus, and Embase. Quality assessment was performed using QUADAS-2 and METRICS. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were estimated using a bivariate model. Separate meta-analyses were conducted for radiomics models and combined models, where the latter integrated clinical and radiological features with radiomics. Subgroup analysis was performed to identify potential sources of heterogeneity. Sensitivity analysis was conducted to identify potential outliers. A total of 15 studies comprising 2,265 patients were included, with seven and six studies contributing to the meta-analysis of radiomics and combined models, respectively. The pooled estimates of the radiomics model were as follows: sensitivity, 0.78; specificity, 0.84; PLR, 4.17; NLR, 0.28; DOR, 17.34; and AUC, 0.84. For the combined model, the pooled sensitivity, specificity, PLR, NLR, DOR, and AUC were 0.87, 0.81, 3.78, 0.21, 28.57, and 0.90, respectively. Radiomics models trained on smaller cohorts exhibited a significantly higher pooled specificity and PLR than those trained on larger cohorts. Also, radiomics models based on single-user segmentation demonstrated a significantly higher pooled specificity compared to multi-user segmentation. Radiomics has demonstrated potential as a non-invasive tool for grading ccRCC, with combined models achieving superior performance.

Development of a deep-learning algorithm for etiological classification of subarachnoid hemorrhage using non-contrast CT scans.

Chen L, Wang X, Li Y, Bao Y, Wang S, Zhao X, Yuan M, Kang J, Sun S

pubmed logopapersMay 17 2025
This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH. The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660). The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings. Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.

Intracranial hemorrhage segmentation and classification framework in computer tomography images using deep learning techniques.

Ahmed SN, Prakasam P

pubmed logopapersMay 17 2025
By helping the neurosurgeon create treatment strategies that increase the survival rate, automotive diagnosis and CT (Computed Tomography) hemorrhage segmentation (CT) could be beneficial. Owing to the significance of medical image segmentation and the difficulties in carrying out human operations, a wide variety of automated techniques for this purpose have been developed, with a primary focus on particular image modalities. In this paper, MUNet (Multiclass-UNet) based Intracranial Hemorrhage Segmentation and Classification Framework (IHSNet) is proposed to successfully segment multiple kinds of hemorrhages while the fully connected layers help in classifying the type of hemorrhages.The segmentation accuracy rates for hemorrhages are 98.53% with classification accuracy stands at 98.71% when using the suggested approach. There is potential for this suggested approach to be expanded in the future to handle further medical picture segmentation issues. Intraventricular hemorrhage (IVH), Epidural hemorrhage (EDH), Intraparenchymal hemorrhage (IPH), Subdural hemorrhage (SDH), Subarachnoid hemorrhage (SAH) are the subtypes involved in intracranial hemorrhage (ICH) whose DICE coefficients are 0.77, 0.84, 0.64, 0.80, and 0.92 respectively.The proposed method has great deal of clinical application potential for computer-aided diagnostics, which can be expanded in the future to handle further medical picture segmentation and to tackle with the involved issues.

Brain metabolic imaging-based model identifies cognitive stability in prodromal Alzheimer's disease.

Perron J, Scramstad C, Ko JH

pubmed logopapersMay 17 2025
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for incipient cognitive decline, since patients with mild cognitive impairment (MCI) may remain stable for several years even with positive AD biomarkers. Using fluorodeoxyglucose PET and biomarker data from 594 ADNI patients, a neural network ensemble was trained to forecast cognition from MCI diagnostic baseline. Training data comprised PET studies of patients with biological AD. The ensemble discriminated between progressive and stable prodromal subjects (MCI with positive amyloid and tau) at baseline with 88.6% area-under-curve, 88.6% (39/44) accuracy, 73.7% (14/19) sensitivity and 100% (25/25) specificity in the test set. It also correctly classified all other test subjects (healthy or AD continuum subjects across the cognitive spectrum) with 86.4% accuracy (206/239), 77.4% sensitivity (33/42) and 88.23% (165/197) specificity. By identifying patients with prodromal AD who will not progress to dementia, our model could significantly reduce overall societal burden and cost if implemented as a screening tool. The model's high positive predictive value in the prodromal test set makes it a practical means for selecting candidates for anti-amyloid therapy and trials.

An integrated deep learning model for early and multi-class diagnosis of Alzheimer's disease from MRI scans.

Vinukonda ER, Jagadesh BN

pubmed logopapersMay 17 2025
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely affects memory, behavior, and cognitive function. Early and accurate diagnosis is crucial for effective intervention, yet detecting subtle changes in the early stages remains a challenge. In this study, we propose a hybrid deep learning-based multi-class classification system for AD using magnetic resonance imaging (MRI). The proposed approach integrates an improved DeepLabV3+ (IDeepLabV3+) model for lesion segmentation, followed by feature extraction using the LeNet-5 model. A novel feature selection method based on average correlation and error probability is employed to enhance classification efficiency. Finally, an Enhanced ResNext (EResNext) model is used to classify AD into four stages: non-dementia (ND), very mild dementia (VMD), mild dementia (MD), and moderate dementia (MOD). The proposed model achieves an accuracy of 98.12%, demonstrating its superior performance over existing methods. The area under the ROC curve (AUC) further validates its effectiveness, with the highest score of 0.97 for moderate dementia. This study highlights the potential of hybrid deep learning models in improving early AD detection and staging, contributing to more accurate clinical diagnosis and better patient care.
Page 96 of 1291287 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.