Sort by:
Page 8 of 82820 results

The impact of updated imaging software on the performance of machine learning models for breast cancer diagnosis: a multi-center, retrospective study.

Cai L, Golatta M, Sidey-Gibbons C, Barr RG, Pfob A

pubmed logopapersJul 1 2025
Artificial Intelligence models based on medical (imaging) data are increasingly developed. However, the imaging software on which the original data is generated is frequently updated. The impact of updated imaging software on the performance of AI models is unclear. We aimed to develop machine learning models using shear wave elastography (SWE) data to identify malignant breast lesions and to test the models' generalizability by validating them on external data generated by both the original updated software versions. We developed and validated different machine learning models (GLM, MARS, XGBoost, SVM) using multicenter, international SWE data (NCT02638935) using tenfold cross-validation. Findings were compared to the histopathologic evaluation of the biopsy specimen or 2-year follow-up. The outcome measure was the area under the curve (AUROC). We included 1288 cases in the development set using the original imaging software and 385 cases in the validation set using both, original and updated software. In the external validation set, the GLM and XGBoost models showed better performance with the updated software data compared to the original software data (AUROC 0.941 vs. 0.902, p < 0.001 and 0.934 vs. 0.872, p < 0.001). The MARS model showed worse performance with the updated software data (0.847 vs. 0.894, p = 0.045). SVM was not calibrated. In this multicenter study using SWE data, some machine learning models demonstrated great potential to bridge the gap between original software and updated software, whereas others exhibited weak generalizability.

A novel deep learning framework for retinal disease detection leveraging contextual and local features cues from retinal images.

Khan SD, Basalamah S, Lbath A

pubmed logopapersJul 1 2025
Retinal diseases are a serious global threat to human vision, and early identification is essential for effective prevention and treatment. However, current diagnostic methods rely on manual analysis of fundus images, which heavily depends on the expertise of ophthalmologists. This manual process is time-consuming and labor-intensive and can sometimes lead to missed diagnoses. With advancements in computer vision technology, several automated models have been proposed to improve diagnostic accuracy for retinal diseases and medical imaging in general. However, these methods face challenges in accurately detecting specific diseases within images due to inherent issues associated with fundus images, including inter-class similarities, intra-class variations, limited local information, insufficient contextual understanding, and class imbalances within datasets. To address these challenges, we propose a novel deep learning framework for accurate retinal disease classification. This framework is designed to achieve high accuracy in identifying various retinal diseases while overcoming inherent challenges associated with fundus images. Generally, the framework consists of three main modules. The first module is Densely Connected Multidilated Convolution Neural Network (DCM-CNN) that extracts global contextual information by effectively integrating novel Casual Dilated Dense Convolutional Blocks (CDDCBs). The second module of the framework, namely, Local-Patch-based Convolution Neural Network (LP-CNN), utilizes Class Activation Map (CAM) (obtained from DCM-CNN) to extract local and fine-grained information. To identify the correct class and minimize the error, a synergic network is utilized that takes the feature maps of both DCM-CNN and LP-CNN and connects both maps in a fully connected fashion to identify the correct class and minimize the errors. The framework is evaluated through a comprehensive set of experiments, both quantitatively and qualitatively, using two publicly available benchmark datasets: RFMiD and ODIR-5K. Our experimental results demonstrate the effectiveness of the proposed framework and achieves higher performance on RFMiD and ODIR-5K datasets compared to reference methods.

Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Nonenhanced MRI.

Liu K, Ning J, Qin S, Xu J, Hao D, Lang N

pubmed logopapersJul 1 2025
The spinal column is a frequent site for metastases, affecting over 30% of solid tumor patients. Identifying the primary tumor is essential for guiding clinical decisions but often requires resource-intensive diagnostics. To develop and validate artificial intelligence (AI) models using noncontrast MRI to identify primary sites of spinal metastases, aiming to enhance diagnostic efficiency. Retrospective. A total of 514 patients with pathologically confirmed spinal metastases (mean age, 59.3 ± 11.2 years; 294 males) were included, split into a development set (360) and a test set (154). Noncontrast sagittal MRI sequences (T1-weighted, T2-weighted, and fat-suppressed T2) were acquired using 1.5 T and 3 T scanners. Two models were evaluated for identifying primary sites of spinal metastases: the expert-derived features (EDF) model using radiologist-identified imaging features and a ResNet50-based deep learning (DL) model trained on noncontrast MRI. Performance was assessed using accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic curve (ROC-AUC) for top-1, top-2, and top-3 indicators. Statistical analyses included Shapiro-Wilk, t tests, Mann-Whitney U test, and chi-squared tests. ROC-AUCs were compared via DeLong tests, with 95% confidence intervals from 1000 bootstrap replications and significance at P < 0.05. The EDF model outperformed the DL model in top-3 accuracy (0.88 vs. 0.69) and AUC (0.80 vs. 0.71). Subgroup analysis showed superior EDF performance for common sites like lung and kidney (e.g., kidney F1: 0.94 vs. 0.76), while the DL model had higher recall for rare sites like thyroid (0.80 vs. 0.20). SHapley Additive exPlanations (SHAP) analysis identified sex (SHAP: -0.57 to 0.68), age (-0.48 to 0.98), T1WI signal intensity (-0.29 to 0.72), and pathological fractures (-0.76 to 0.25) as key features. AI techniques using noncontrast MRI improve diagnostic efficiency for spinal metastases. The EDF model outperformed the DL model, showing greater clinical potential. Spinal metastases, or cancer spreading to the spine, are common in patients with advanced cancer, often requiring extensive tests to determine the original tumor site. Our study explored whether artificial intelligence could make this process faster and more accurate using noncontrast MRI scans. We tested two methods: one based on radiologists' expertise in identifying imaging features and another using a deep learning model trained to analyze MRI images. The expert-based method was more reliable, correctly identifying the tumor site in 88% of cases when considering the top three likely diagnoses. This approach may help doctors reduce diagnostic time and improve patient care. 3 TECHNICAL EFFICACY: Stage 2.

Effect of artificial intelligence-aided differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management.

Grosu S, Fabritius MP, Winkelmann M, Puhr-Westerheide D, Ingenerf M, Maurus S, Graser A, Schulz C, Knösel T, Cyran CC, Ricke J, Kazmierczak PM, Ingrisch M, Wesp P

pubmed logopapersJul 1 2025
Adenomatous colorectal polyps require endoscopic resection, as opposed to non-adenomatous hyperplastic colorectal polyps. This study aims to evaluate the effect of artificial intelligence (AI)-assisted differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists' therapy management. Five board-certified radiologists evaluated CT colonography images with colorectal polyps of all sizes and morphologies retrospectively and decided whether the depicted polyps required endoscopic resection. After a primary unassisted reading based on current guidelines, a second reading with access to the classification of a radiomics-based random-forest AI-model labelling each polyp as "non-adenomatous" or "adenomatous" was performed. Performance was evaluated using polyp histopathology as the reference standard. 77 polyps in 59 patients comprising 118 polyp image series (47% supine position, 53% prone position) were evaluated unassisted and AI-assisted by five independent board-certified radiologists, resulting in a total of 1180 readings (subsequent polypectomy: yes or no). AI-assisted readings had higher accuracy (76% +/- 1% vs. 84% +/- 1%), sensitivity (78% +/- 6% vs. 85% +/- 1%), and specificity (73% +/- 8% vs. 82% +/- 2%) in selecting polyps eligible for polypectomy (p < 0.001). Inter-reader agreement was improved in the AI-assisted readings (Fleiss' kappa 0.69 vs. 0.92). AI-based characterisation of colorectal polyps at CT colonography as a second reader might enable a more precise selection of polyps eligible for subsequent endoscopic resection. However, further studies are needed to confirm this finding and histopathologic polyp evaluation is still mandatory. Question This is the first study evaluating the impact of AI-based polyp classification in CT colonography on radiologists' therapy management. Findings Compared with unassisted reading, AI-assisted reading had higher accuracy, sensitivity, and specificity in selecting polyps eligible for polypectomy. Clinical relevance Integrating an AI tool for colorectal polyp classification in CT colonography could further improve radiologists' therapy recommendations.

Machine-learning model based on ultrasomics for non-invasive evaluation of fibrosis in IgA nephropathy.

Huang Q, Huang F, Chen C, Xiao P, Liu J, Gao Y

pubmed logopapersJul 1 2025
To develop and validate an ultrasomics-based machine-learning (ML) model for non-invasive assessment of interstitial fibrosis and tubular atrophy (IF/TA) in patients with IgA nephropathy (IgAN). In this multi-center retrospective study, 471 patients with primary IgA nephropathy from four institutions were included (training, n = 275; internal testing, n = 69; external testing, n = 127; respectively). The least absolute shrinkage and selection operator logistic regression with tenfold cross-validation was used to identify the most relevant features. The ML models were constructed based on ultrasomics. The Shapley Additive Explanation (SHAP) was used to explore the interpretability of the models. Logistic regression analysis was employed to combine ultrasomics, clinical data, and ultrasound imaging characteristics, creating a comprehensive model. A receiver operating characteristic curve, calibration, decision curve, and clinical impact curve were used to evaluate prediction performance. To differentiate between mild and moderate-to-severe IF/TA, three prediction models were developed: the Rad_SVM_Model, Clinic_LR_Model, and Rad_Clinic_Model. The area under curves of these three models were 0.861, 0.884, and 0.913 in the training cohort, and 0.760, 0.860, and 0.894 in the internal validation cohort, as well as 0.794, 0.865, and 0.904 in the external validation cohort. SHAP identified the contribution of radiomics features. Difference analysis showed that there were significant differences between radiomics features and fibrosis. The comprehensive model was superior to that of individual indicators and performed well. We developed and validated a model that combined ultrasomics, clinical data, and clinical ultrasonic characteristics based on ML to assess the extent of fibrosis in IgAN. Question Currently, there is a lack of a comprehensive ultrasomics-based machine-learning model for non-invasive assessment of the extent of Immunoglobulin A nephropathy (IgAN) fibrosis. Findings We have developed and validated a robust and interpretable machine-learning model based on ultrasomics for assessing the degree of fibrosis in IgAN. Clinical relevance The machine-learning model developed in this study has significant interpretable clinical relevance. The ultrasomics-based comprehensive model had the potential for non-invasive assessment of fibrosis in IgAN, which helped evaluate disease progress.

Noninvasive identification of HER2 status by integrating multiparametric MRI-based radiomics model with the vesical imaging-reporting and data system (VI-RADS) score in bladder urothelial carcinoma.

Luo C, Li S, Han Y, Ling J, Wu X, Chen L, Wang D, Chen J

pubmed logopapersJul 1 2025
HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Vesical Imaging-Reporting and Data System (VI-RADS) score for noninvasive identification of HER2 status in bladder urothelial carcinoma (BUC). A total of 197 patients were retrospectively enrolled and randomly divided into a training cohort (n = 145) and a testing cohort (n = 52). The multimodal radiomics features were derived from mpMRI, which were also utilized for VI-RADS score evaluation. LASSO algorithm and six machine learning methods were applied for radiomics feature screening and model construction. The optimal radiomics model was selected to integrate with VI-RADS score to predict HER2 status, which was determined by immunohistochemistry. The performance of predictive model was evaluated by receiver operating characteristic curve with area under the curve (AUC). Among the enrolled patients, 110 (55.8%) patients were demonstrated with HER2-positive and 87 (44.2%) patients were HER2-negative. Eight features were selected to establish radiomics signature. The optimal radiomics signature achieved the AUC values of 0.841 (95% CI 0.779-0.904) in the training cohort and 0.794 (95%CI 0.650-0.938) in the testing cohort, respectively. The KNN model was selected to evaluate the significance of radiomics signature and VI-RADS score, which were integrated as a predictive nomogram. The AUC values for the nomogram in the training and testing cohorts were 0.889 (95%CI 0.840-0.938) and 0.826 (95%CI 0.702-0.950), respectively. Our study indicated the predictive model based on the integration of mpMRI-based radiomics and VI-RADS score could accurately predict HER2 status in BUC. The model might aid clinicians in tailoring individualized therapeutic strategies.

CT-based clinical-radiomics model to predict progression and drive clinical applicability in locally advanced head and neck cancer.

Bruixola G, Dualde-Beltrán D, Jimenez-Pastor A, Nogué A, Bellvís F, Fuster-Matanzo A, Alfaro-Cervelló C, Grimalt N, Salhab-Ibáñez N, Escorihuela V, Iglesias ME, Maroñas M, Alberich-Bayarri Á, Cervantes A, Tarazona N

pubmed logopapersJul 1 2025
Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk stratification. This single-centre observational study collected clinical data and baseline CT scans from 171 LAHNSCC patients treated with chemoradiation. The dataset was divided into training (80%) and test (20%) sets, with a 5-fold cross-validation on the training set. Researchers extracted 108 radiomics features from each primary tumour and applied survival analysis and classification models to predict progression-free survival (PFS) and 5-year progression, respectively. Performance was evaluated using inverse probability of censoring weights and c-index for the PFS model and AUC, sensitivity, specificity, and accuracy for the 5-year progression model. Feature importance was measured by the SHapley Additive exPlanations (SHAP) method and patient stratification was assessed through Kaplan-Meier curves. The final dataset included 171 LAHNSCC patients, with 53% experiencing disease progression at 5 years. The random survival forest model best predicted PFS, with an AUC of 0.64 and CI of 0.66 on the test set, highlighting 4 radiomics features and TNM8 as significant contributors. It successfully stratified patients into low and high-risk groups (log-rank p < 0.005). The extreme gradient boosting model most effectively predicted a 5-year progression, incorporating 12 radiomics features and four clinical variables, achieving an AUC of 0.74, sensitivity of 0.53, specificity of 0.81, and accuracy of 0.66 on the test set. The combined clinical-radiomics model improved the standard TNM8 and clinical variables in predicting 5-year progression though further validation is necessary. Question There is an unmet need for non-invasive biomarkers to guide treatment in locally advanced head and neck cancer. Findings Clinical data (TNM8 staging, primary tumour site, age, and smoking) plus radiomics improved 5-year progression prediction compared with the clinical comprehensive model or TNM staging alone. Clinical relevance SHAP simplifies complex machine learning radiomics models for clinicians by using easy-to-understand graphical representations, promoting explainability.

Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence.

Zhao B, Cao B, Xia T, Zhu L, Yu Y, Lu C, Tang T, Wang Y, Ju S

pubmed logopapersJul 1 2025
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The radiological assessment determined the stage and management of PDAC. However, it is a highly heterogeneous disease with the complexity of the tumor microenvironment, and it is challenging to adequately reflect the biological aggressiveness and prognosis accurately through morphological evaluation alone. With the dramatic development of artificial intelligence (AI), multiparametric magnetic resonance imaging (mpMRI) using specific contrast media and special techniques can provide morphological and functional information with high image quality and become a powerful tool in quantifying intratumor characteristics. Besides, AI has been widespread in the field of medical imaging analysis. Radiomics is the high-throughput mining of quantitative image features from medical imaging that enables data to be extracted and applied for better decision support. Deep learning is a subset of artificial neural network algorithms that can automatically learn feature representations from data. AI-enabled imaging biomarkers of mpMRI have enormous promise to bridge the gap between medical imaging and personalized medicine and demonstrate huge advantages in predicting biological characteristics and the prognosis of PDAC. However, current AI-based models of PDAC operate mainly in the realm of a single modality with a relatively small sample size, and the technical reproducibility and biological interpretation present a barrage of new potential challenges. In the future, the integration of multi-omics data, such as radiomics and genomics, alongside the establishment of standardized analytical frameworks will provide opportunities to increase the robustness and interpretability of AI-enabled image biomarkers and bring these biomarkers closer to clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 4.

Preoperative discrimination of absence or presence of myometrial invasion in endometrial cancer with an MRI-based multimodal deep learning radiomics model.

Chen Y, Ruan X, Wang X, Li P, Chen Y, Feng B, Wen X, Sun J, Zheng C, Zou Y, Liang B, Li M, Long W, Shen Y

pubmed logopapersJul 1 2025
Accurate preoperative evaluation of myometrial invasion (MI) is essential for treatment decisions in endometrial cancer (EC). However, the diagnostic accuracy of commonly utilized magnetic resonance imaging (MRI) techniques for this assessment exhibits considerable variability. This study aims to enhance preoperative discrimination of absence or presence of MI by developing and validating a multimodal deep learning radiomics (MDLR) model based on MRI. During March 2010 and February 2023, 1139 EC patients (age 54.771 ± 8.465 years; range 24-89 years) from five independent centers were enrolled retrospectively. We utilized ResNet18 to extract multi-scale deep learning features from T2-weighted imaging followed by feature selection via Mann-Whitney U test. Subsequently, a Deep Learning Signature (DLS) was formulated using Integrated Sparse Bayesian Extreme Learning Machine. Furthermore, we developed Clinical Model (CM) based on clinical characteristics and MDLR model by integrating clinical characteristics with DLS. The area under the curve (AUC) was used for evaluating diagnostic performance of the models. Decision curve analysis (DCA) and integrated discrimination index (IDI) were used to assess the clinical benefit and compare the predictive performance of models. The MDLR model comprised of age, histopathologic grade, subjective MR findings (TMD and Reading for MI status) and DLS demonstrated the best predictive performance. The AUC values for MDLR in training set, internal validation set, external validation set 1, and external validation set 2 were 0.899 (95% CI, 0.866-0.926), 0.874 (95% CI, 0.829-0.912), 0.862 (95% CI, 0.817-0.899) and 0.867 (95% CI, 0.806-0.914) respectively. The IDI and DCA showed higher diagnostic performance and clinical net benefits for the MDLR than for CM or DLS, which revealed MDLR may enhance decision-making support. The MDLR which incorporated clinical characteristics and DLS could improve preoperative accuracy in discriminating absence or presence of MI. This improvement may facilitate individualized treatment decision-making for EC.

Longitudinal twin growth discordance patterns and adverse perinatal outcomes.

Prasad S, Ayhan I, Mohammed D, Kalafat E, Khalil A

pubmed logopapersJul 1 2025
Growth discordance in twin pregnancies is associated with increased perinatal morbidity and mortality, yet the patterns of discordance progression and the utility of Doppler assessments remain underinvestigated. The objective of this study was to conduct a longitudinal assessment of intertwin growth and Doppler discordance to identify possible distinct patterns and to investigate the predictive value of longitudinal discordance patterns for adverse perinatal outcomes in twin pregnancies. This retrospective cohort study included twin pregnancies followed and delivered at a tertiary hospital in London (United Kingdom) between 2010 and 2023. We included pregnancies with at least 3 ultrasound assessments after 18 weeks and delivery beyond 34 weeks' gestation. Monoamniotic twin pregnancies, pregnancies with twin-to-twin transfusion syndrome, genetic or structural abnormalities, or incomplete data were excluded. Data on chorionicity, biometry, Doppler indices, maternal characteristics and obstetrics, and neonatal outcomes were extracted from electronic records. Doppler assessment included velocimetry of the umbilical artery, middle cerebral artery, and cerebroplacental ratio. Intertwin growth discordance was calculated for each scan. The primary outcome was a composite of perinatal mortality and neonatal morbidity. Statistical analysis involved multilevel mixed effects regression models and unsupervised machine learning algorithms, specifically k-means clustering, to identify distinct patterns of intertwin discordance and their predictive value. Predictive models were compared using the area under the receiver operating characteristic curve, calibration intercept, and slope, validated with repeated cross-validation. Analyses were performed using R, with significance set at P<.05. Data from 823 twin pregnancies (647 dichorionic, 176 monochorionic) were analyzed. Five distinct patterns of intertwin growth discordance were identified using an unsupervised learning algorithm that clustered twin pairs based on the progression and patterns of discordance over gestation: low-stable (n=204, 24.8%), mild-decreasing (n=171, 20.8%), low-increasing (n=173, 21.0%), mild-increasing (n=189, 23.0%), and high-stable (n=86, 10.4%). In the high-stable cluster, the rates of perinatal morbidity (46.5%, 40/86) and mortality (9.3%, 8/86) were significantly higher compared to the low-stable (reference) cluster (P<.001). High-stable growth pattern was also associated with a significantly higher risk of composite adverse perinatal outcomes (odds ratio: 70.19, 95% confidence interval: 24.18-299.03, P<.001; adjusted odds ratio: 76.44, 95% confidence interval: 25.39-333.02, P<.001). The model integrating discordance pattern with cerebroplacental ratio discordance at the last ultrasound before delivery demonstrated superior predictive accuracy, evidenced by the highest area under the receiver operating characteristic curve of 0.802 (95% confidence interval: 0.712-0.892, P<.001), compared to only discordance patterns (area under the receiver operating characteristic curve: 0.785, 95% confidence interval: 0.697-0.873), intertwin weight discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.677, 95% confidence interval: 0.545-0.809), combination of single measurements of estimated fetal weight and cardiopulmonary resuscitation discordance at the last ultrasound prior to delivery (area under the receiver operating characteristic curve: 0.702, 95% confidence interval: 0.586-0.818), and single measurement of cardiopulmonary resuscitation discordance only at the last ultrasound (area under the receiver operating characteristic curve: 0.633, 95% confidence interval: 0.515-0.751). Using an unsupervised machine learning algorithm, we identified 5 distinct trajectories of intertwin fetal growth discordance. Consistent high discordance is associated with increased rates of adverse perinatal outcomes, with a dose-response relationship. Moreover, a predictive model integrating discordance trajectory and cardiopulmonary resuscitation discordance at the last visit demonstrated superior predictive accuracy for the prediction of composite adverse perinatal outcomes, compared to either of these measurements alone or a single value of estimated fetal weight discordance at the last ultrasound prior to delivery.
Page 8 of 82820 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.