Sort by:
Page 60 of 70696 results

ActiveNaf: A novel NeRF-based approach for low-dose CT image reconstruction through active learning.

Zidane A, Shimshoni I

pubmed logopapersMay 22 2025
CT imaging provides essential information about internal anatomy; however, conventional CT imaging delivers radiation doses that can become problematic for patients requiring repeated imaging, highlighting the need for dose-reduction techniques. This study aims to reduce radiation doses without compromising image quality. We propose an approach that combines Neural Attenuation Fields (NAF) with an active learning strategy to better optimize CT reconstructions given a limited number of X-ray projections. Our method uses a secondary neural network to predict the Peak Signal-to-Noise Ratio (PSNR) of 2D projections generated by NAF from a range of angles in the operational range of the CT scanner. This prediction serves as a guide for the active learning process in choosing the most informative projections. In contrast to conventional techniques that acquire all X-ray projections in a single session, our technique iteratively acquires projections. The iterative process improves reconstruction quality, reduces the number of required projections, and decreases patient radiation exposure. We tested our methodology on spinal imaging using a limited subset of the VerSe 2020 dataset. We compare image quality metrics (PSNR3D, SSIM3D, and PSNR2D) to the baseline method and find significant improvements. Our method achieves the same quality with 36 projections as the baseline method achieves with 60. Our findings demonstrate that our approach achieves high-quality 3D CT reconstructions from sparse data, producing clearer and more detailed images of anatomical structures. This work lays the groundwork for advanced imaging techniques, paving the way for safer and more efficient medical imaging procedures.

Cross-Scale Texture Supplementation for Reference-based Medical Image Super-Resolution.

Li Y, Hao W, Zeng H, Wang L, Xu J, Routray S, Jhaveri RH, Gadekallu TR

pubmed logopapersMay 22 2025
Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique, but its resolution is often limited by acquisition time constraints, potentially compromising diagnostic accuracy. Reference-based Image Super-Resolution (RefSR) has shown promising performance in addressing such challenges by leveraging external high-resolution (HR) reference images to enhance the quality of low-resolution (LR) images. The core objective of RefSR is to accurately establish correspondences between the reference HR image and the LR images. In pursuit of this objective, this paper develops a Self-rectified Texture Supplementation network for RefSR (STS-SR) to enhance fine details in MRI images and support the expanding role of autonomous AI in healthcare. Our network comprises a texture-specified selfrectified feature transfer module and a cross-scale texture complementary network. The feature transfer module employs highfrequency filtering to facilitate the network concentrating on fine details. To better exploit the information from both the reference and LR images, our cross-scale texture complementary module incorporates the All-ViT and Swin Transformer layers to achieve feature aggregation at multiple scales, which enables high-quality image enhancement that is critical for autonomous AI systems in healthcare to make accurate decisions. Extensive experiments are performed across various benchmark datasets. The results validate the effectiveness of our method and demonstrate that the method produces state-of-the-art performance as compared to existing approaches. This advancement enables autonomous AI systems to utilize high-quality MRI images for more accurate diagnostics and reliable predictions.

DP-MDM: detail-preserving MR reconstruction via multiple diffusion models.

Geng M, Zhu J, Hong R, Liu Q, Liang D, Liu Q

pubmed logopapersMay 22 2025
<i>Objective.</i>Magnetic resonance imaging (MRI) is critical in medical diagnosis and treatment by capturing detailed features, such as subtle tissue changes, which help clinicians make precise diagnoses. However, the widely used single diffusion model has limitations in accurately capturing more complex details. This study aims to address these limitations by proposing an efficient method to enhance the reconstruction of detailed features in MRI.<i>Approach.</i>We present a detail-preserving reconstruction method that leverages multiple diffusion models (DP-MDM) to extract structural and detailed features in the k-space domain, which complements the image domain. Since high-frequency information in k-space is more systematically distributed around the periphery compared to the irregular distribution of detailed features in the image domain, this systematic distribution allows for more efficient extraction of detailed features. To further reduce redundancy and enhance model performance, we introduce virtual binary masks with adjustable circular center windows that selectively focus on high-frequency regions. These masks align with the frequency distribution of k-space data, enabling the model to focus more efficiently on high-frequency information. The proposed method employs a cascaded architecture, where the first diffusion model recovers low-frequency structural components, with subsequent models enhancing high-frequency details during the iterative reconstruction stage.<i>Main results.</i>Experimental results demonstrate that DP-MDM achieves superior performance across multiple datasets. On the<i>T1-GE brain</i>dataset with 2D random sampling at<i>R</i>= 15, DP-MDM achieved 35.14 dB peak signal-to-noise ratio (PSNR) and 0.8891 structural similarity (SSIM), outperforming other methods. The proposed method also showed robust performance on the<i>Fast-MRI</i>and<i>Cardiac MR</i>datasets, achieving the highest PSNR and SSIM values.<i>Significance.</i>DP-MDM significantly advances MRI reconstruction by balancing structural integrity and detail preservation. It not only enhances diagnostic accuracy through improved image quality but also offers a versatile framework that can potentially be extended to other imaging modalities, thereby broadening its clinical applicability.

Enhancing nuclei segmentation in breast histopathology images using U-Net with backbone architectures.

C V LP, V G B, Bhooshan RS

pubmed logopapersMay 21 2025
Breast cancer remains a leading cause of mortality among women worldwide, underscoring the need for accurate and timely diagnostic methods. Precise segmentation of nuclei in breast histopathology images is crucial for effective diagnosis and prognosis, offering critical insights into tumor characteristics and informing treatment strategies. This paper presents an enhanced U-Net architecture utilizing ResNet-34 as an advanced backbone, aimed at improving nuclei segmentation performance. The proposed model is evaluated and compared with standard U-Net and its other variants, including U-Net with VGG-16 and Inception-v3 backbones, using the BreCaHad dataset with nuclei masks generated through ImageJ software. The U-Net model with ResNet-34 backbone achieved superior performance, recording an Intersection over Union (IoU) score of 0.795, significantly outperforming the basic U-Net's IoU score of 0.725. The integration of advanced backbones and data augmentation techniques substantially improved segmentation accuracy, especially on limited medical imaging datasets. Comparative analysis demonstrated that ResNet-34 consistently surpassed other configurations across multiple metrics, including IoU, accuracy, precision, and F1 score. Further validation on the BNS and MoNuSeg-2018 datasets confirmed the robustness of the proposed model. This study highlights the potential of advanced deep learning architectures combined with augmentation methods to address challenges in nuclei segmentation, contributing to the development of more effective clinical diagnostic tools and improved patient care outcomes.

Three-Blind Validation Strategy of Deep Learning Models for Image Segmentation.

Larroza A, Pérez-Benito FJ, Tendero R, Perez-Cortes JC, Román M, Llobet R

pubmed logopapersMay 21 2025
Image segmentation plays a central role in computer vision applications such as medical imaging, industrial inspection, and environmental monitoring. However, evaluating segmentation performance can be particularly challenging when ground truth is not clearly defined, as is often the case in tasks involving subjective interpretation. These challenges are amplified by inter- and intra-observer variability, which complicates the use of human annotations as a reliable reference. To address this, we propose a novel validation framework-referred to as the three-blind validation strategy-that enables rigorous assessment of segmentation models in contexts where subjectivity and label variability are significant. The core idea is to have a third independent expert, blind to the labeler identities, assess a shuffled set of segmentations produced by multiple human annotators and/or automated models. This allows for the unbiased evaluation of model performance and helps uncover patterns of disagreement that may indicate systematic issues with either human or machine annotations. The primary objective of this study is to introduce and demonstrate this validation strategy as a generalizable framework for robust model evaluation in subjective segmentation tasks. We illustrate its practical implementation in a mammography use case involving dense tissue segmentation while emphasizing its potential applicability to a broad range of segmentation scenarios.

BrainView: A Cloud-based Deep Learning System for Brain Image Segmentation, Tumor Detection and Visualization.

Ghose P, Jamil HM

pubmed logopapersMay 21 2025
A brain tumor is an abnormal growth in the brain that disrupts its functionality and poses a significant threat to human life by damaging neurons. Early detection and classification of brain tumors are crucial to prevent complications and maintain good health. Recent advancements in deep learning techniques have shown immense potential in image classification and segmentation for tumor identification and classification. In this study, we present a platform, BrainView, for detection, and segmentation of brain tumors from Magnetic Resonance Images (MRI) using deep learning. We utilized EfficientNetB7 pre-trained model to design our proposed DeepBrainNet classification model for analyzing brain MRI images to classify its type. We also proposed a EfficinetNetB7 based image segmentation model, called the EffB7-UNet, for tumor localization. Experimental results show significantly high classification (99.96%) and segmentation (92.734%) accuracies for our proposed models. Finally, we discuss the contours of a cloud application for BrainView using Flask and Flutter to help researchers and clinicians use our machine learning models online for research purposes.

Large medical image database impact on generalizability of synthetic CT scan generation.

Boily C, Mazellier JP, Meyer P

pubmed logopapersMay 21 2025
This study systematically examines the impact of training database size and the generalizability of deep learning models for synthetic medical image generation. Specifically, we employ a Cycle-Consistency Generative Adversarial Network (CycleGAN) with softly paired data to synthesize kilovoltage computed tomography (kVCT) images from megavoltage computed tomography (MVCT) scans. Unlike previous works, which were constrained by limited data availability, our study uses an extensive database comprising 4,000 patient CT scans, an order of magnitude larger than prior research, allowing for a more rigorous assessment of database size in medical image translation. We quantitatively evaluate the fidelity of the generated synthetic images using established image similarity metrics, including Mean Absolute Error (MAE) and Structural Similarity Index Measure (SSIM). Beyond assessing image quality, we investigate the model's capacity for generalization by analyzing its performance across diverse patient subgroups, considering factors such as sex, age, and anatomical region. This approach enables a more granular understanding of how dataset composition influences model robustness.

An automated deep learning framework for brain tumor classification using MRI imagery.

Aamir M, Rahman Z, Bhatti UA, Abro WA, Bhutto JA, He Z

pubmed logopapersMay 21 2025
The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring individualized treatment strategies for each patient. Radiologists require considerable proficiency to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, and labor-intensive in manual procedures, underscoring the need for automated methods. This study introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) images, minimizing dependence on manual intervention. The proposed method improves image clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished through an attention module that isolates distinctive features while eliminating irrelevant information. An ensemble model is employed to classify brain tumors into different categories. The proposed technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in terms of automation and robustness, thereby enhancing the entire diagnostic process.

FasNet: a hybrid deep learning model with attention mechanisms and uncertainty estimation for liver tumor segmentation on LiTS17.

Singh R, Gupta S, Almogren A, Rehman AU, Bharany S, Altameem A, Choi J

pubmed logopapersMay 21 2025
Liver cancer, especially hepatocellular carcinoma (HCC), remains one of the most fatal cancers globally, emphasizing the critical need for accurate tumor segmentation to enable timely diagnosis and effective treatment planning. Traditional imaging techniques, such as CT and MRI, rely on manual interpretation, which can be both time-intensive and subject to variability. This study introduces FasNet, an innovative hybrid deep learning model that combines ResNet-50 and VGG-16 architectures, incorporating Channel and Spatial Attention mechanisms alongside Monte Carlo Dropout to improve segmentation precision and reliability. FasNet leverages ResNet-50's robust feature extraction and VGG-16's detailed spatial feature capture to deliver superior liver tumor segmentation accuracy. Channel and spatial attention mechanisms could selectively focus on the most relevant features and spatial regions for suitable segmentation with good accuracy and reliability. Monte Carlo Dropout estimates uncertainty and adds robustness, which is critical for high-stakes medical applications. Tested on the LiTS17 dataset, FasNet achieved a Dice Coefficient of 0.8766 and a Jaccard Index of 0.8487, surpassing several state-of-the-art methods. The Channel and Spatial Attention mechanisms in FasNet enhance feature selection, focusing on the most relevant spatial and channel information, while Monte Carlo Dropout improves model robustness and uncertainty estimation. These results position FasNet as a powerful diagnostic tool, offering precise and automated liver tumor segmentation that aids in early detection and precise treatment, ultimately enhancing patient outcomes.

Deep Learning with Domain Randomization in Image and Feature Spaces for Abdominal Multiorgan Segmentation on CT and MRI Scans.

Shi Y, Wang L, Qureshi TA, Deng Z, Xie Y, Li D

pubmed logopapersMay 21 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a deep learning segmentation model that can segment abdominal organs on CT and MR images with high accuracy and generalization ability. Materials and Methods In this study, an extended nnU-Net model was trained for abdominal organ segmentation. A domain randomization method in both the image and feature space was developed to improve the generalization ability under cross-site and cross-modality settings on public prostate MRI and abdominal CT and MRI datasets. The prostate MRI dataset contains data from multiple health care institutions with domain shifts. The abdominal CT and MRI dataset is structured for cross-modality evaluation, training on one modality (eg, MRI) and testing on the other (eg, CT). This domain randomization method was then used to train a segmentation model with enhanced generalization ability on the abdominal multiorgan segmentation challenge (AMOS) dataset to improve abdominal CT and MR multiorgan segmentation, and the model was compared with two commonly used segmentation algorithms (TotalSegmentator and MRSegmentator). Model performance was evaluated using the Dice similarity coefficient (DSC). Results The proposed domain randomization method showed improved generalization ability on the cross-site and cross-modality datasets compared with the state-of-the-art methods. The segmentation model using this method outperformed two other publicly available segmentation models on data from unseen test domains (Average DSC: 0.88 versus 0.79; <i>P</i> < .001 and 0.88 versus 0.76; <i>P</i> < .001). Conclusion The combination of image and feature domain randomizations improved the accuracy and generalization ability of deep learning-based abdominal segmentation on CT and MR images. © RSNA, 2025.
Page 60 of 70696 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.