Sort by:
Page 53 of 3053046 results

Harnessing infrared thermography and multi-convolutional neural networks for early breast cancer detection.

Attallah O

pubmed logopapersJul 28 2025
Breast cancer is a relatively common carcinoma among women worldwide and remains a considerable public health concern. Consequently, the prompt identification of cancer is crucial, as research indicates that 96% of cancers are treatable if diagnosed prior to metastasis. Despite being considered the gold standard for breast cancer evaluation, conventional mammography possesses inherent drawbacks, including accessibility issues, especially in rural regions, and discomfort associated with the procedure. Therefore, there has been a surge in interest in non-invasive, radiation-free alternative diagnostic techniques, such as thermal imaging (thermography). Thermography employs infrared thermal sensors to capture and assess temperature maps of human breasts for the identification of potential tumours based on areas of thermal irregularity. This study proposes an advanced computer-aided diagnosis (CAD) system called Thermo-CAD to assess early breast cancer detection using thermal imaging, aimed at assisting radiologists. The CAD system employs a variety of deep learning techniques, specifically incorporating multiple convolutional neural networks (CNNs) to enhance diagnostic accuracy and reliability. To effectively integrate multiple deep features and diminish the dimensionality of features derived from each CNN, feature transformation and selection methods, including non-negative matrix factorization and Relief-F, are used leading to a reduction in classification complexity. The Thermo-CAD system is assessed utilising two datasets: the DMR-IR (Database for Mastology Research Infrared Images), for distinguishing between normal and abnormal breast tissues, and a novel thermography dataset to distinguish abnormal instances as benign or malignant. Thermo-CAD has proven to be an outstanding CAD system for thermographic breast cancer detection, attaining 100% accuracy on the DMR-IR dataset (normal versus abnormal breast cancer) using CSVM and MGSVM classifiers, and lower accuracy using LSVM and QSVM classifiers. However, it showed a lower ability to distinguish benign from malignant cases (second dataset), achieving an accuracy of 79.3% using CSVM. Yet, it remains a promising tool for early-stage cancer detection, especially in resource-constrained environments.

Constructing a predictive model for children with autism spectrum disorder based on whole brain magnetic resonance radiomics: a machine learning study.

Chen X, Peng J, Zhang Z, Song Q, Li D, Zhai G, Fu W, Shu Z

pubmed logopapersJul 28 2025
Autism spectrum disorder (ASD) diagnosis remains challenging and could benefit from objective imaging-based approaches. This study aimed to construct a prediction model using whole-brain imaging radiomics and machine learning to identify children with ASD. We analyzed 223 subjects (120 with ASD) from the ABIDE database, randomly divided into training and test sets (7:3 ratio), and an independent external test set of 87 participants from Georgetown University and University of Miami. Radiomics features were extracted from white matter, gray matter, and cerebrospinal fluid from whole-brain MR images. After feature dimensionality reduction, we screened clinical predictors using multivariate logistic regression and combined them with radiomics signatures to build machine learning models. Model performance was evaluated using ROC curves and by stratifying subjects into risk subgroups. Radiomics markers achieved AUCs of 0.78, 0.75, and 0.74 in training, test, and external test sets, respectively. Verbal intelligence quotient(VIQ) emerged as a significant ASD predictor. The decision tree algorithm with radiomics markers performed best, with AUCs of 0.87, 0.84, and 0.83; sensitivities of 0.89, 0.84, and 0.86; and specificities of 0.70, 0.63, and 0.66 in the three datasets, respectively. Risk stratification using a cut-off value of 0.4285 showed significant differences in ASD prevalence between subgroups across all datasets (training: χ<sup>2</sup>=21.325; test: χ<sup>2</sup>=5.379; external test: χ<sup>2</sup>=21.52m, P<0.05). A radiomics signature based on whole-brain MRI features can effectively identify ASD, with performance enhanced by incorporating VIQ data and using a decision tree algorithm, providing a potential adaptive strategy for clinical practice. ASD = Autism Spectrum Disorder; MRI = Magnetic Resonance Imaging; SVM = support vector machine; KNN = K-nearest neighbor; VIQ = Verbal intelligence quotient; FIQ = Full-Scale intelligence quotient; ROC = Receiver Operating Characteristic; AUC = Area under Curve.

Deep Learning-Based Acceleration in MRI: Current Landscape and Clinical Applications in Neuroradiology.

Rai P, Mark IT, Soni N, Diehn F, Messina SA, Benson JC, Madhavan A, Agarwal A, Bathla G

pubmed logopapersJul 28 2025
Magnetic resonance imaging (MRI) is a cornerstone of neuroimaging, providing unparalleled soft-tissue contrast. However, its clinical utility is often limited by long acquisition times, which contribute to motion artifacts, patient discomfort, and increased costs. Although traditional acceleration techniques, such as parallel imaging and compressed sensing help reduce scan times, they may reduce signal-to-noise ratio (SNR) and introduce artifacts. The advent of deep learning-based image reconstruction (DLBIR) may help in several ways to reduce scan times while preserving or improving image quality. Various DLBIR techniques are currently available through different vendors, with claimed reductions in gradient times up to 85% while maintaining or enhancing lesion conspicuity, improved noise suppression and diagnostic accuracy. The evolution of DLBIR from 2D to 3D acquisitions, coupled with advancements in self-supervised learning, further expands its capabilities and clinical applicability. Despite these advancements, challenges persist in generalizability across scanners and imaging conditions, susceptibility to artifacts and potential alterations in pathology representation. Additionally, limited data on training, underlying algorithms and clinical validation of these vendor-specific closed-source algorithms pose barriers to end-user trust and widespread adoption. This review explores the current applications of DLBIR in neuroimaging, vendor-driven implementations, and emerging trends that may impact accelerated MRI acquisitions.ABBREVIATIONS: PI= parallel imaging; CS= compressed sensing; DLBIR = deep learning-based image reconstruction; AI= artificial intelligence; DR =. Deep resolve; ACS = Artificial-intelligence-assisted compressed sensing.

Radiomics with Machine Learning Improves the Prediction of Microscopic Peritumoral Small Cancer Foci and Early Recurrence in Hepatocellular Carcinoma.

Zou W, Gu M, Chen H, He R, Zhao X, Jia N, Wang P, Liu W

pubmed logopapersJul 28 2025
This study aimed to develop an interpretable machine learning model using magnetic resonance imaging (MRI) radiomics features to predict preoperative microscopic peritumoral small cancer foci (MSF) and explore its relationship with early recurrence in hepatocellular carcinoma (HCC) patients. A total of 1049 patients from three hospitals were divided into a training set (Hospital 1: 614 cases), a test set (Hospital 2: 248 cases), and a validation set (Hospital 3: 187 cases). Independent risk factors from clinical and MRI features were identified using univariate and multivariate logistic regression to build a clinicoradiological model. MRI radiomics features were then selected using methods like least absolute shrinkage and selection operator (LassoCV) and modeled with various machine learning algorithms, choosing the best-performing model as the radiomics model. The clinical and radiomics features were combined to form a fusion model. Model performance was evaluated by comparing receiver operating characteristic (ROC) curves, area under the curve (AUC) values, calibration curves, and decision curve analysis (DCA) curves. Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) values assessed improvements in predictive efficacy. The model's prognostic value was verified using Kaplan-Meier analysis. SHapley Additive exPlanations (SHAP) was used to interpret how the model makes predictions. Three models were developed as follows: Clinical Radiology, XGBoost, and Clinical XGBoost. XGBoost was selected as the final model for predicting MSF, with AUCs of 0.841, 0.835, and 0.817 in the training, test, and validation sets, respectively. These results were comparable to the Clinical XGBoost model (0.856, 0.826, 0.837) and significantly better than the Clinical Radiology model (0.688, 0.561, 0.613). Additionally, the XGBoost model effectively predicted early recurrence in HCC patients. This study successfully developed an interpretable XGBoost machine learning model based on MRI radiomics features to predict preoperative MSF and early recurrence in HCC patients.

Evaluating the accuracy of artificial intelligence-powered chest X-ray diagnosis for paediatric pulmonary tuberculosis (EVAL-PAEDTBAID): Study protocol for a multi-centre diagnostic accuracy study.

Aurangzeb B, Robert D, Baard C, Qureshi AA, Shaheen A, Ambreen A, McFarlane D, Javed H, Bano I, Chiramal JA, Workman L, Pillay T, Franckling-Smith Z, Mustafa T, Andronikou S, Zar HJ

pubmed logopapersJul 28 2025
Diagnosing pulmonary tuberculosis (PTB) in children is challenging owing to paucibacillary disease, non-specific symptoms and signs and challenges in microbiological confirmation. Chest X-ray (CXR) interpretation is fundamental for diagnosis and classifying disease as severe or non-severe. In adults with PTB, there is substantial evidence showing the usefulness of artificial intelligence (AI) in CXR interpretation, but very limited data exist in children. A prospective two-stage study of children with presumed PTB in three sites (one in South Africa and two in Pakistan) will be conducted. In stage I, eligible children will be enrolled and comprehensively investigated for PTB. A CXR radiological reference standard (RRS) will be established by an expert panel of blinded radiologists. CXRs will be classified into those with findings consistent with PTB or not based on RRS. Cases will be classified as confirmed, unconfirmed or unlikely PTB according to National Institutes of Health definitions. Data from 300 confirmed and unconfirmed PTB cases and 250 unlikely PTB cases will be collected. An AI-CXR algorithm (qXR) will be used to process CXRs. The primary endpoint will be sensitivity and specificity of AI to detect confirmed and unconfirmed PTB cases (composite reference standard); a secondary endpoint will be evaluated for confirmed PTB cases (microbiological reference standard). In stage II, a multi-reader multi-case study using a cross-over design will be conducted with 16 readers and 350 CXRs to assess the usefulness of AI-assisted CXR interpretation for readers (clinicians and radiologists). The primary endpoint will be the difference in the area under the receiver operating characteristic curve of readers with and without AI assistance in correctly classifying CXRs as per RRS. The study has been approved by a local institutional ethics committee at each site. Results will be published in academic journals and presented at conferences. Data will be made available as an open-source database. PACTR202502517486411.

Segmentation of the human tongue musculature using MRI: Field guide and validation in motor neuron disease.

Shaw TB, Ribeiro FL, Zhu X, Aiken P, Bollmann S, Bollmann S, Chang J, Chidley K, Dempsey-Jones H, Eftekhari Z, Gillespie J, Henderson RD, Kiernan MC, Ktena I, McCombe PA, Ngo ST, Taubert ST, Whelan BM, Ye X, Steyn FJ, Tu S, Barth M

pubmed logopapersJul 28 2025
This work addresses the challenge of reliably measuring the muscles of the human tongue, which are difficult to quantify due to complex interwoven muscle types. We introduce a new semi-automated method, enabled by a manually curated dataset of MRI scans to accurately measure five key tongue muscles, combining AI-assisted, atlas-based, and manual segmentation approaches. The method was tested and validated in a dataset of 178 scans and included segmentation validation (n = 103) and clinical application (n = 132) in individuals with motor neuron disease. We show that people with speech and swallowing deficits tend to have smaller muscle volumes and present a normalisation strategy that removes confounding demographic factors, enabling broader application to large MRI datasets. As the tongue is generally covered in neuroimaging protocols, our multi-contrast pipeline will allow for the post-hoc analysis of a vast number of datasets. We expect this work to enable the investigation of tongue muscle morphology as a marker in a wide range of diseases that implicate tongue function, including neurodegenerative diseases and pathological speech disorders.

Harnessing deep learning to optimize induction chemotherapy choices in nasopharyngeal carcinoma.

Chen ZH, Han X, Lin L, Lin GY, Li B, Kou J, Wu CF, Ai XL, Zhou GQ, Gao MY, Lu LJ, Sun Y

pubmed logopapersJul 28 2025
Currently, there is no guidance for personalized choice of induction chemotherapy (IC) regimens (TPF, docetaxel + cisplatin + 5-Fu; or GP, gemcitabine + cisplatin) for locoregionally advanced nasopharyngeal carcinoma (LA-NPC). This study aimed to develop deep learning models for IC response prediction in LA-NPC. For 1438 LA-NPC patients, pretreatment magnetic resonance imaging (MRI) scans and complete biological response (cBR) information after 3 cycles of IC were collected from two centers. All models were trained in 969 patients (TPF: 548, GP: 421), and internally validated in 243 patients (TPF: 138, GP: 105), then tested on an internal dataset of 226 patients (TPF: 125, GP: 101). MRI models for the TPF and GP cohorts were constructed to predict cBR from MRI using radiomics and graph convolutional network (GCN). The MRI-Clinical models were built based on both MRI and clinical parameters. The MRI models and MRI-Clinical models achieved high discriminative accuracy in both TPF cohorts (MRI model: AUC, 0.835; MRI-Clinical model: AUC, 0.838) and GP cohorts (MRI model: AUC, 0.764; MRI-Clinical model: AUC, 0.777). The MRI-Clinical models also showed good performance in the risk stratification. The survival curve revealed that the 3-year disease-free survival of the high-sensitivity group was better than that of the low-sensitivity group in both the TPF and GP cohorts. An online tool guiding personalized choice of IC regimen was developed based on MRI-Clinical models. Our radiomics and GCN-based IC response prediction tool has robust predictive performance and may provide guidance for personalized treatment.

Determining the scanning range of coronary computed tomography angiography based on deep learning.

Zhao YH, Fan YH, Wu XY, Qin T, Sun QT, Liang BH

pubmed logopapersJul 28 2025
Coronary computed tomography angiography (CCTA) is essential for diagnosing coronary artery disease as it provides detailed images of the heart's blood vessels to identify blockages or abnormalities. Traditionally, determining the computed tomography (CT) scanning range has relied on manual methods due to limited automation in this area. To develop and evaluate a novel deep learning approach to automate the determination of CCTA scan ranges using anteroposterior scout images. A retrospective analysis was conducted on chest CT data from 1388 patients at the Radiology Department of the First Affiliated Hospital of a university-affiliated hospital, collected between February 27 and March 27, 2024. A deep learning model was trained on anteroposterior scout images with annotations based on CCTA standards. The dataset was split into training (672 cases), validation (167 cases), and test (167 cases) sets to ensure robust model evaluation. The study demonstrated exceptional performance on the test set, achieving a mean average precision (mAP50) of 0.995 and mAP50-95 of 0.994 for determining CCTA scan ranges. This study demonstrates that: (1) Anteroposterior scout images can effectively estimate CCTA scan ranges; and (2) Estimates can be dynamically adjusted to meet the needs of various medical institutions.

The evolving role of multimodal imaging, artificial intelligence and radiomics in the radiologic assessment of immune related adverse events.

Das JP, Ma HY, DeJong D, Prendergast C, Baniasadi A, Braumuller B, Giarratana A, Khonji S, Paily J, Shobeiri P, Yeh R, Dercle L, Capaccione KM

pubmed logopapersJul 28 2025
Immunotherapy, in particular checkpoint blockade, has revolutionized the treatment of many advanced cancers. Imaging plays a critical role in assessing both treatment response and the development of immune toxicities. Both conventional imaging and molecular imaging techniques can be used to evaluate multisystemic immune related adverse events (irAEs), including thoracic, abdominal and neurologic irAEs. As artificial intelligence (AI) proliferates in medical imaging, radiologic assessment of irAEs will become more efficient, improving the diagnosis, prognosis, and management of patients affected by immune-related toxicities. This review addresses some of the advancements in medical imaging including the potential future role of radiomics in evaluating irAEs, which may facilitate clinical decision-making and improvements in patient care.

Continual learning in medical image analysis: A comprehensive review of recent advancements and future prospects.

Kumari P, Chauhan J, Bozorgpour A, Huang B, Azad R, Merhof D

pubmed logopapersJul 28 2025
Medical image analysis has witnessed remarkable advancements, even surpassing human-level performance in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when the inference dataset slightly differs from what the model has seen during one-time training, the model performance is greatly compromised. The situation requires restarting the training process using both the old and the new data, which is computationally costly, does not align with the human learning process, and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and the drifting nature of data in non-stationary environments for various application areas. Continual learning techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining performance on evolving datasets and novel tasks. Owing to its popularity and promising performance, it is an active and emerging research topic in the medical field and hence demands a survey and taxonomy to clarify the current research landscape of continual learning in medical image analysis. This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical image analysis. We present an extensive survey of existing research, covering topics including catastrophic forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components of a continual learning framework, such as continual learning scenarios, techniques, evaluation schemes, and metrics, is provided. Continual learning techniques encompass various categories, including rehearsal, regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual learning categories in various medical sub-fields like radiology and histopathology. Our exploration considers unique challenges in the medical domain, including costly data annotation, temporal drift, and the crucial need for benchmarking datasets to ensure consistent model evaluation. The paper also addresses current challenges and looks ahead to potential future research directions.
Page 53 of 3053046 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.