Sort by:
Page 50 of 3053046 results

Multiple Tumor-related autoantibodies test enhances CT-based deep learning performance in diagnosing lung cancer with diameters < 70 mm: a prospective study in China.

Meng Q, Ren P, Guo L, Gao P, Liu T, Chen W, Liu W, Peng H, Fang M, Meng S, Ge H, Li M, Chen X

pubmed logopapersJul 29 2025
Deep learning (DL) demonstrates high sensitivity but low specificity in lung cancer (LC) detection during CT screening, and the seven Tumor-associated antigens autoantibodies (7-TAAbs), known for its high specificity in LC, was employed to improve the DL's specificity for the efficiency of LC screening in China. To develop and evaluate a risk model combining 7-TAAbs test and DL scores for diagnosing LC with pulmonary lesions < 70 mm. Four hundreds and six patients with 406 lesions were enrolled and assigned into training set (n = 313) and test set (n = 93) randomly. The malignant lesions were defined as those lesions with high malignant risks by DL or those with positive expression of 7-TAAbs panel. Model performance was assessed using the area under the receiver operating characteristic curves (AUC). In the training set, the AUCs for DL, 7-TAAbs, combined model (DL and 7-TAAbs) and combined model (DL or 7-TAAbs) were 0.771, 0.638, 0.606, 0.809 seperately. In the test set, the combined model (DL or 7-TAAbs) achieved achieved the highest sensitivity (82.6%), NPV (81.8%) and accuracy (79.6%) among four models, and the AUCs of DL model, 7-TAAbs model, combined model (DL and 7-TAAbs), and combined model (DL or 7-TAAbs) were 0.731, 0.679, 0.574, and 0.794, respectively. The 7-TAAbs test significantly enhances DL performance in predicting LC with pulmonary leisons < 70 mm in China.

MFFBi-Unet: Merging Dynamic Sparse Attention and Multi-scale Feature Fusion for Medical Image Segmentation.

Sun B, Liu C, Wang Q, Bi K, Zhang W

pubmed logopapersJul 29 2025
The advancement of deep learning has driven extensive research validating the effectiveness of U-Net-style symmetric encoder-decoder architectures based on Transformers for medical image segmentation. However, the inherent design requiring attention mechanisms to compute token affinities across all spatial locations leads to prohibitive computational complexity and substantial memory demands. Recent efforts have attempted to address these limitations through sparse attention mechanisms. However, existing approaches employing artificial, content-agnostic sparse attention patterns demonstrate limited capability in modeling long-range dependencies effectively. We propose MFFBi-Unet, a novel architecture incorporating dynamic sparse attention through bi-level routing, enabling context-aware computation allocation with enhanced adaptability. The encoder-decoder module integrates BiFormer to optimize semantic feature extraction and facilitate high-fidelity feature map reconstruction. A novel Multi-scale Feature Fusion (MFF) module in skip connections synergistically combines multi-level contextual information with processed multi-scale features. Extensive evaluations on multiple public medical benchmarks demonstrate that our method consistently exhibits significant advantages. Notably, our method achieves statistically significant improvements, outperforming state-of-the-art approaches like MISSFormer by 2.02% and 1.28% Dice scores on respective benchmarks.

A novel deep learning-based brain age prediction framework for routine clinical MRI scans.

Kim H, Park S, Seo SW, Na DL, Jang H, Kim JP, Kim HJ, Kang SH, Kwak K

pubmed logopapersJul 29 2025
Physiological brain aging is associated with cognitive impairment and neuroanatomical changes. Brain age prediction of routine clinical 2D brain MRI scans were understudied and often unsuccessful. We developed a novel brain age prediction framework for clinical 2D T1-weighted MRI scans using a deep learning-based model trained with research grade 3D MRI scans mostly from publicly available datasets (N = 8681; age = 51.76 ± 21.74). Our model showed accurate and fast brain age prediction on clinical 2D MRI scans from cognitively unimpaired (CU) subjects (N = 175) with MAE of 2.73 years after age bias correction (Pearson's r = 0.918). Brain age gap of Alzheimer's disease (AD) subjects was significantly greater than CU subjects (p < 0.001) and increase in brain age gap was associated with disease progression in both AD (p < 0.05) and Parkinson's disease (p < 0.01). Our framework can be extended to other MRI modalities and potentially applied to routine clinical examinations, enabling early detection of structural anomalies and improve patient outcome.

A hybrid filtering and deep learning approach for early Alzheimer's disease identification.

Ahamed MKU, Hossen R, Paul BK, Hasan M, Al-Arashi WH, Kazi M, Talukder MA

pubmed logopapersJul 29 2025
Alzheimer's disease is a progressive neurological disorder that profoundly affects cognitive functions and daily activities. Rapid and precise identification is essential for effective intervention and improved patient outcomes. This research introduces an innovative hybrid filtering approach with a deep transfer learning model for detecting Alzheimer's disease utilizing brain imaging data. The hybrid filtering method integrates the Adaptive Non-Local Means filter with a Sharpening filter for image preprocessing. Furthermore, the deep learning model used in this study is constructed on the EfficientNetV2B3 architecture, augmented with additional layers and fine-tuning to guarantee effective classification among four categories: Mild, moderate, very mild, and non-demented. The work employs Grad-CAM++ to enhance interpretability by localizing disease-relevant characteristics in brain images. The experimental assessment, performed on a publicly accessible dataset, illustrates the ability of the model to achieve an accuracy of 99.45%. These findings underscore the capability of sophisticated deep learning methodologies to aid clinicians in accurately identifying Alzheimer's disease.

Prediction of MGMT methylation status in glioblastoma patients based on radiomics feature extracted from intratumoral and peritumoral MRI imaging.

Chen WS, Fu FX, Cai QL, Wang F, Wang XH, Hong L, Su L

pubmed logopapersJul 29 2025
Assessing MGMT promoter methylation is crucial for determining appropriate glioblastoma therapy. Previous studies have focused on intratumoral regions, overlooking the peritumoral area. This study aimed to develop a radiomic model using MRI-derived features from both regions. We included 96 glioblastoma patients randomly allocated to training and testing sets. Radiomic features were extracted from intratumoral and peritumoral regions. We constructed and compared radiomic models based on intratumoral, peritumoral, and combined features. Model performance was evaluated using the area under the receiver-operating characteristic curve (AUC). The combined radiomic model achieved an AUC of 0.814 (95% CI: 0.767-0.862) in the training set and 0.808 (95% CI: 0.736-0.859) in the testing set, outperforming models based on intratumoral or peritumoral features alone. Calibration and decision curve analyses demonstrated excellent model fit and clinical utility. The radiomic model incorporating both intratumoral and peritumoral features shows promise in differentiating MGMT methylation status, potentially informing clinical treatment strategies for glioblastoma.

Gout Diagnosis From Ultrasound Images Using a Patch-Wise Attention Deep Network.

Zhao Y, Xiao L, Liu H, Li Y, Ning C, Liu M

pubmed logopapersJul 29 2025
The rising global prevalence of gout necessitates advancements in diagnostic methodologies. Ultrasonographic imaging of the foot has become an important diagnostic modality for gout because of its non-invasiveness, cost-effectiveness, and real-time imaging capabilities. This study aims to develop and validate a deep learning-based artificial intelligence (AI) model for automated gout diagnosis using ultrasound images. In this study, ultrasound images were primarily acquired at the first metatarsophalangeal joint (MTP1) from 598 cases in two institutions: 520 from Institution 1 and 78 from Institution 2. From Institution 1's dataset, 66% of cases were randomly allocated for model training, while the remaining 34% constitute the internal test set. The dataset from Institution 2 served as an independent external validation cohort. A novel deep learning model integrating a patch-wise attention mechanism and multi-scale feature extraction was developed to enhance the detection of subtle sonographic features and optimize diagnostic performance. The proposed model demonstrated robust diagnostic efficacy, achieving an accuracy of 87.88%, a sensitivity of 87.85%, a specificity of 87.93%, and an area under the curve (AUC) of 93.43%. Additionally, the model generates interpretable visual heatmaps to localize gout-related pathological features, thereby facilitating interpretation for clinical decision-making. In this paper, a deep learning-based artificial intelligence (AI) model was developed for the automated detection of gout using ultrasound images, which achieved better performance than other models. Furthermore, the features highlighted by the model align closely with expert assessments, demonstrating its potential to assist in the ultrasound-based diagnosis of gout.

Deep sensorless tracking of ultrasound probe orientation during freehand transperineal biopsy with spatial context for symmetry disambiguation.

Soormally C, Beitone C, Troccaz J, Voros S

pubmed logopapersJul 29 2025
Diagnosis of prostate cancer requires histopathology of tissue samples. Following an MRI to identify suspicious areas, a biopsy is performed under ultrasound (US) guidance. In existing assistance systems, 3D US information is generally available (taken before the biopsy session and/or in between samplings). However, without registration between 2D images and 3D volumes, the urologist must rely on cognitive navigation. This work introduces a deep learning model to track the orientation of real-time US slices relative to a reference 3D US volume using only image and volume data. The dataset comprises 515 3D US volumes collected from 51 patients during routine transperineal biopsy. To generate 2D images streams, volumes are resampled to simulate three degrees of freedom rotational movements around the rectal entrance. The proposed model comprises two ResNet-based sub-modules to address the symmetry ambiguity arising from complex out-of-plane movement of the probe. The first sub-module predicts the unsigned relative orientation between consecutive slices, while the second leverages a custom similarity model and a spatial context volume to determine the sign of this relative orientation. From the sub-modules predictions, slices orientations along the navigated trajectory can then be derived in real-time. Results demonstrate that registration error remains below 2.5 mm in 92% of cases over a 5-second trajectory, and 80% over a 25-second trajectory. These findings show that accurate, sensorless 2D/3D US registration given a spatial context is achievable with limited drift over extended navigation. This highlights the potential of AI-driven biopsy assistance to increase the accuracy of freehand biopsy.

Feature Selection in Healthcare Datasets: Towards a Generalizable Solution.

Maruotto I, Ciliberti FK, Gargiulo P, Recenti M

pubmed logopapersJul 29 2025
The increasing dimensionality of healthcare datasets presents major challenges for clinical data analysis and interpretation. This study introduces a scalable ensemble feature selection (FS) strategy optimized for multi-biometric healthcare datasets aiming to: address the need for dimensionality reduction, identify the most significant features, improve machine learning models' performance, and enhance interpretability in a clinical context. The novel waterfall selection, that integrates sequentially (a) tree-based feature ranking and (b) greedy backward feature elimination, produces as output several sets of features. These subsets are then combined using a specific merging strategy to produce a single set of clinically relevant features. The overall method is applied to two healthcare datasets: the biosignal-based BioVRSea dataset, containing electromyography, electroencephalography, and center-of-pressure data for postural control and motion sickness assessment, and the image-based SinPain dataset, which includes MRI and CT-scan data to study knee osteoarthritis. Our ensemble FS approach demonstrated effective dimensionality reduction, achieving over a 50% decrease in certain feature subsets. The new reduced feature set maintained or improved the model classification metrics when tested with Support Vector Machine and Random Forest models. The proposed ensemble FS method retains selected features essential for distinguishing clinical outcomes, leading to models that are both computationally efficient and clinically interpretable. Furthermore, the adaptability of this method across two heterogeneous healthcare datasets and the scalability of the algorithm indicates its potential as a generalizable tool in healthcare studies. This approach can advance clinical decision support systems, making high-dimensional healthcare datasets more accessible and clinically interpretable.

Time-series X-ray image prediction of dental skeleton treatment progress via neural networks.

Kwon SW, Moon JK, Song SC, Cha JY, Kim YW, Choi YJ, Lee JS

pubmed logopapersJul 29 2025
Accurate prediction of skeletal changes during orthodontic treatment in growing patients remains challenging due to significant individual variability in craniofacial growth and treatment responses. Conventional methods, such as support vector regression and multilayer perceptrons, require multiple sequential radiographs to achieve acceptable accuracy. However, they are limited by increased radiation exposure, susceptibility to landmark identification errors, and the lack of visually interpretable predictions. To overcome these limitations, this study explored advanced generative approaches, including denoising diffusion probabilistic models (DDPMs), latent diffusion models (LDMs), and ControlNet, to predict future cephalometric radiographs using minimal input data. We evaluated three diffusion-based models-a DDPM utilizing three sequential cephalometric images (3-input DDPM), a single-image DDPM (1-input DDPM), and a single-image LDM-and a vision-based generative model, ControlNet, conditioned on patient-specific attributes such as age, sex, and orthodontic treatment type. Quantitative evaluations demonstrated that the 3-input DDPM achieved the highest numerical accuracy, whereas the single-image LDM delivered comparable predictive performance with significantly reduced clinical requirements. ControlNet also exhibited competitive accuracy, highlighting its potential effectiveness in clinical scenarios. These findings indicate that the single-image LDM and ControlNet offer practical solutions for personalized orthodontic treatment planning, reducing patient visits and radiation exposure while maintaining robust predictive accuracy.

Radiomics, machine learning, and deep learning for hippocampal sclerosis identification: a systematic review and diagnostic meta-analysis.

Baptista JM, Brenner LO, Koga JV, Ohannesian VA, Ito LA, Nabarro PH, Santos LP, Henrique A, de Oliveira Almeida G, Berbet LU, Paranhos T, Nespoli V, Bertani R

pubmed logopapersJul 29 2025
Hippocampal sclerosis (HS) is the primary pathological finding in temporal lobe epilepsy (TLE) and a common cause of refractory seizures. Conventional diagnostic methods, such as EEG and MRI, have limitations. Artificial intelligence (AI) and radiomics, utilizing machine learning and deep learning, offer a non-invasive approach to enhance diagnostic accuracy. This study synthesized recent AI and radiomics research to improve HS detection in TLE. PubMed/Medline, Embase, and Web of Science were systematically searched following PRISMA-DTA guidelines until May 2024. Statistical analysis was conducted using STATA 14. A bivariate model was used to pool sensitivity (SEN) and specificity (SPE) for HS detection, with I2 assessing heterogeneity. Six studies were included. The pooled sensitivity and specificity of AI-based models for HS detection in medial temporal lobe epilepsy (MTLE) were 0.91 (95 % CI: 0.83-0.96; I2 = 71.48 %) and 0.9 (95 % CI: 0.83-0.94; I2 = 69.62 %), with an AUC of 0.96. AI alone showed higher sensitivity (0.92) and specificity (0.93) than AI combined with radiomics (sensitivity: 0.88; specificity: 0.9). Among algorithms, support vector machine (SVM) had the highest performance (SEN: 0.92; SPE: 0.95), followed by convolutional neural networks (CNN) and logistic regression (LR). AI models, particularly SVM, demonstrate high accuracy in detecting HS, with AI alone outperforming its combination with radiomics. These findings support the integration of AI into non-invasive diagnostic workflows, potentially enabling earlier detection and more personalized clinical decision-making in epilepsy care-ultimately contributing to improved patient outcomes and behavioral management.
Page 50 of 3053046 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.