Sort by:
Page 50 of 1391387 results

Review and reflections on live AI mammographic screen reading in a large UK NHS breast screening unit.

Puri S, Bagnall M, Erdelyi G

pubmed logopapersJun 1 2025
The Radiology team from a large Breast Screening Unit in the UK with a screening population of over 135,000 took part in a service evaluation project using artificial intelligence (AI) for reading breast screening mammograms. To evaluate the clinical benefit AI may provide when implemented as a silent reader in a double reading breast screening programme and to evaluate feasibility and the operational impact of deploying AI into the breast screening programme. The service was one of 14 breast screening sites in the UK to take part in this project and we present our local experience with AI in breast screening. A commercially available AI platform was deployed and worked in real time as a 'silent third reader' so as not to impact standard workflows and patient care. All cases flagged by AI but not recalled by standard double reading (positive discordant cases) were reviewed along with all cases recalled by human readers but not flagged by AI (negative discordant cases). 9,547 cases were included in the evaluation. 1,135 positive discordant cases were reviewed, and one woman was recalled from the reviews who was not found to have cancer on further assessment in the breast assessment clinic. 139 negative discordant cases were reviewed, and eight cancer cases (8.79% of total cancers detected in this period) recalled by human readers were not detected by AI. No additional cancers were detected by AI during the study. Performance of AI was inferior to human readers in our unit. Having missed a significant number of cancers makes it unreliable and not safe to be used in clinical practice. AI is not currently of sufficient accuracy to be considered in the NHS Breast Screening Programme.

Advances in MRI optic nerve segmentation.

Xena-Bosch C, Kodali S, Sahi N, Chard D, Llufriu S, Toosy AT, Martinez-Heras E, Prados F

pubmed logopapersJun 1 2025
Understanding optic nerve structure and monitoring changes within it can provide insights into neurodegenerative diseases like multiple sclerosis, in which optic nerves are often damaged by inflammatory episodes of optic neuritis. Over the past decades, interest in the optic nerve has increased, particularly with advances in magnetic resonance technology and the advent of deep learning solutions. These advances have significantly improved the visualisation and analysis of optic nerves, making it possible to detect subtle changes that aid the early diagnosis and treatment of optic nerve-related diseases, and for planning radiotherapy interventions. Effective segmentation techniques, therefore, are crucial for enhancing the accuracy of predictive models, planning interventions and treatment strategies. This comprehensive review, which includes 27 peer-reviewed articles published between 2007 and 2024, examines and highlights the evolution of optic nerve magnetic resonance imaging segmentation over the past decade, tracing the development from intensity-based methods to the latest deep learning algorithms, including multi-atlas solutions using single or multiple image modalities.

Early-stage lung cancer detection via thin-section low-dose CT reconstruction combined with AI in non-high risk populations: a large-scale real-world retrospective cohort study.

Ji G, Luo W, Zhu Y, Chen B, Wang M, Jiang L, Yang M, Song W, Yao P, Zheng T, Yu H, Zhang R, Wang C, Ding R, Zhuo X, Chen F, Li J, Tang X, Xian J, Song T, Tang J, Feng M, Shao J, Li W

pubmed logopapersJun 1 2025
Current lung cancer screening guidelines recommend annual low-dose computed tomography (LDCT) for high-risk individuals. However, the effectiveness of LDCT in non-high-risk individuals remains inadequately explored. With the incidence of lung cancer steadily increasing among non-high-risk individuals, this study aims to assess the risk of lung cancer in non-high-risk individuals and evaluate the potential of thin-section LDCT reconstruction combined with artificial intelligence (LDCT-TRAI) as a screening tool. A real-world cohort study on lung cancer screening was conducted at the West China Hospital of Sichuan University from January 2010 to July 2021. Participants were screened using either LDCT-TRAI or traditional thick-section LDCT without AI (traditional LDCT) . The AI system employed was the uAI-ChestCare software. Lung cancer diagnoses were confirmed through pathological examination. Among the 259 121 enrolled non-high-risk participants, 87 260 (33.7%) had positive screening results. Within 1 year, 728 (0.3%) participants were diagnosed with lung cancer, of whom 87.1% (634/728) were never-smokers, and 92.7% (675/728) presented with stage I disease. Compared with traditional LDCT, LDCT-TRAI demonstrated a higher lung cancer detection rate (0.3% vs. 0.2%, <i>P</i> < 0.001), particularly for stage I cancers (94.4% vs. 83.2%, <i>P</i> < 0.001), and was associated with improved survival outcomes (5-year overall survival rate: 95.4% vs. 81.3%, <i>P</i> < 0.0001). These findings highlight the importance of expanding lung cancer screening to non-high-risk populations, especially never-smokers. LDCT-TRAI outperformed traditional LDCT in detecting early-stage cancers and improving survival outcomes, underscoring its potential as a more effective screening tool for early lung cancer detection in this population.

multiPI-TransBTS: A multi-path learning framework for brain tumor image segmentation based on multi-physical information.

Zhu H, Huang J, Chen K, Ying X, Qian Y

pubmed logopapersJun 1 2025
Brain Tumor Segmentation (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors. However, due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task. In this study, we propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy. The model leverages spatial information, semantic information, and multi-modal imaging data, addressing the inherent heterogeneity in brain tumor characteristics. The multiPI-TransBTS framework consists of an encoder, an Adaptive Feature Fusion (AFF) module, and a multi-source, multi-scale feature decoder. The encoder incorporates a multi-branch architecture to separately extract modality-specific features from different MRI sequences. The AFF module fuses information from multiple sources using channel-wise and element-wise attention, ensuring effective feature recalibration. The decoder combines both common and task-specific features through a Task-Specific Feature Introduction (TSFI) strategy, producing accurate segmentation outputs for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) regions. Comprehensive evaluations on the BraTS2019 and BraTS2020 datasets demonstrate the superiority of multiPI-TransBTS over the state-of-the-art methods. The model consistently achieves better Dice coefficients, Hausdorff distances, and Sensitivity scores, highlighting its effectiveness in addressing the BraTS challenges. Our results also indicate the need for further exploration of the balance between precision and recall in the ET segmentation task. The proposed framework represents a significant advancement in BraTS, with potential implications for improving clinical outcomes for brain tumor patients.

A computed tomography-based deep learning radiomics model for predicting the gender-age-physiology stage of patients with connective tissue disease-associated interstitial lung disease.

Long B, Li R, Wang R, Yin A, Zhuang Z, Jing Y, E L

pubmed logopapersJun 1 2025
To explore the feasibility of using a diagnostic model constructed with deep learning-radiomics (DLR) features extracted from chest computed tomography (CT) images to predict the gender-age-physiology (GAP) stage of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). The data of 264 CTD-ILD patients were retrospectively collected. GAP Stage I, II, III patients are 195, 56, 13 cases respectively. The latter two stages were combined into one group. The patients were randomized into a training set and a validation set. Single-input models were separately constructed using the selected radiomics and DL features, while DLR model was constructed from both sets of features. For all models, the support vector machine (SVM) and logistic regression (LR) algorithms were used for construction. The nomogram models were generated by integrating age, gender, and DLR features. The DLR model outperformed the radiomics and DL models in both the training set and the validation set. The predictive performance of the DLR model based on the LR algorithm was the best among all the feature-based models (AUC = 0.923). The comprehensive models had even greater performance in predicting the GAP stage of CTD-ILD patients. The comprehensive model using the SVM algorithm had the best performance of the two models (AUC = 0.951). The DLR model extracted from CT images can assist in the clinical prediction of the GAP stage of CTD-ILD patients. A nomogram showed even greater performance in predicting the GAP stage of CTD-ILD patients.

Boosting polyp screening with improved point-teacher weakly semi-supervised.

Du X, Zhang X, Chen J, Li L

pubmed logopapersJun 1 2025
Polyps, like a silent time bomb in the gut, are always lurking and can explode into deadly colorectal cancer at any time. Many methods are attempted to maximize the early detection of colon polyps by screening, however, there are still face some challenges: (i) the scarcity of per-pixel annotation data and clinical features such as the blurred boundary and low contrast of polyps result in poor performance. (ii) existing weakly semi-supervised methods directly using pseudo-labels to supervise student tend to ignore the value brought by intermediate features in the teacher. To adapt the point-prompt teacher model to the challenging scenarios of complex medical images and limited annotation data, we creatively leverage the diverse inductive biases of CNN and Transformer to extract robust and complementary representation of polyp features (boundary and context). At the same time, a novel designed teacher-student intermediate feature distillation method is introduced rather than just using pseudo-labels to guide student learning. Comprehensive experiments demonstrate that our proposed method effectively handles scenarios with limited annotations and exhibits good segmentation performance. All code is available at https://github.com/dxqllp/WSS-Polyp.

Detection of COVID-19, lung opacity, and viral pneumonia via X-ray using machine learning and deep learning.

Lamouadene H, El Kassaoui M, El Yadari M, El Kenz A, Benyoussef A, El Moutaouakil A, Mounkachi O

pubmed logopapersJun 1 2025
The COVID-19 pandemic has significantly strained healthcare systems, highlighting the need for early diagnosis to isolate positive cases and prevent the spread. This study combines machine learning, deep learning, and transfer learning techniques to automatically diagnose COVID-19 and other pulmonary conditions from radiographic images. First, we used Convolutional Neural Networks (CNNs) and a Support Vector Machine (SVM) classifier on a dataset of 21,165 chest X-ray images. Our model achieved an accuracy of 86.18 %. This approach aids medical experts in rapidly and accurateky detecting lung diseases. Next, we applied transfer learning using ResNet18 combined with SVM on a dataset comprising normal, COVID-19, lung opacity, and viral pneumonia images. This model outperformed traditional methods, with classification rates of 98 % with Stochastic Gradient Descent (SGD), 97 % with Adam, 96 % with RMSProp, and 94 % with Adagrad optimizers. Additionally, we incorporated two additional transfer learning models, EfficientNet-CNN and Xception-CNN, which achieved classification accuracies of 99.20 % and 98.80 %, respectively. However, we observed limitations in dataset diversity and representativeness, which may affect model generalization. Future work will focus on implementing advanced data augmentation techniques and collaborations with medical experts to enhance model performance.This research demonstrates the potential of cutting-edge deep learning techniques to improve diagnostic accuracy and efficiency in medical imaging applications.

Enhancing radiomics features via a large language model for classifying benign and malignant breast tumors in mammography.

Ra S, Kim J, Na I, Ko ES, Park H

pubmed logopapersJun 1 2025
Radiomics is widely used to assist in clinical decision-making, disease diagnosis, and treatment planning for various target organs, including the breast. Recent advances in large language models (LLMs) have helped enhance radiomics analysis. Herein, we sought to improve radiomics analysis by incorporating LLM-learned clinical knowledge, to classify benign and malignant tumors in breast mammography. We extracted radiomics features from the mammograms based on the region of interest and retained the features related to the target task. Using prompt engineering, we devised an input sequence that reflected the selected features and the target task. The input sequence was fed to the chosen LLM (LLaMA variant), which was fine-tuned using low-rank adaptation to enhance radiomics features. This was then evaluated on two mammogram datasets (VinDr-Mammo and INbreast) against conventional baselines. The enhanced radiomics-based method performed better than baselines using conventional radiomics features tested on two mammogram datasets, achieving accuracies of 0.671 for the VinDr-Mammo dataset and 0.839 for the INbreast dataset. Conventional radiomics models require retraining from scratch for an unseen dataset using a new set of features. In contrast, the model developed in this study effectively reused the common features between the training and unseen datasets by explicitly linking feature names with feature values, leading to extensible learning across datasets. Our method performed better than the baseline method in this retraining setting using an unseen dataset. Our method, one of the first to incorporate LLM into radiomics, has the potential to improve radiomics analysis.

Generative adversarial networks in medical image reconstruction: A systematic literature review.

Hussain J, Båth M, Ivarsson J

pubmed logopapersJun 1 2025
Recent advancements in generative adversarial networks (GANs) have demonstrated substantial potential in medical image processing. Despite this progress, reconstructing images from incomplete data remains a challenge, impacting image quality. This systematic literature review explores the use of GANs in enhancing and reconstructing medical imaging data. A document survey of computing literature was conducted using the ACM Digital Library to identify relevant articles from journals and conference proceedings using keyword combinations, such as "generative adversarial networks or generative adversarial network," "medical image or medical imaging," and "image reconstruction." Across the reviewed articles, there were 122 datasets used in 175 instances, 89 top metrics employed 335 times, 10 different tasks with a total count of 173, 31 distinct organs featured in 119 instances, and 18 modalities utilized in 121 instances, collectively depicting significant utilization of GANs in medical imaging. The adaptability and efficacy of GANs were showcased across diverse medical tasks, organs, and modalities, utilizing top public as well as private/synthetic datasets for disease diagnosis, including the identification of conditions like cancer in different anatomical regions. The study emphasized GAN's increasing integration and adaptability in diverse radiology modalities, showcasing their transformative impact on diagnostic techniques, including cross-modality tasks. The intricate interplay between network size, batch size, and loss function refinement significantly impacts GAN's performance, although challenges in training persist. The study underscores GANs as dynamic tools shaping medical imaging, contributing significantly to image quality, training methodologies, and overall medical advancements, positioning them as substantial components driving medical advancements.

The impact of Alzheimer's disease on cortical complexity and its underlying biological mechanisms.

Chen L, Zhou X, Qiao Y, Wang Y, Zhou Z, Jia S, Sun Y, Peng D

pubmed logopapersJun 1 2025
Alzheimer's disease (AD) might impact the complexity of cerebral cortex, and the underlying biological mechanisms responsible for cortical changes in the AD cortex remain unclear. Fifty-eight participants with AD and 67 normal controls underwent high-resolution 3 T structural brain MRI. Using surface-based morphometry (SBM), we created vertex-wise maps for group comparisons in terms of five measures: cortical thickness, fractal dimension, gyrification index, Toro's gyrification index and sulcal depth respectively. Five machine learning (ML) models combining SBM parameters were established to predict AD. In addition, transcription-neuroimaging association analyses, as well as Mendelian randomization of AD and cortical thickness data, were conducted to investigate the genetic mechanisms and biological functions of AD. AD patients exhibited topological changes in cortical complexity, with increased complexity in the frontal and temporal cortex and decreased complexity in the insula cortex, alongside extensive cortical atrophy. Combining different SBM measures could aid disease diagnosis. The genes involved in cell structure support and the immune response were the strongest contributors to cortical anatomical features in AD patients. The identified genes associated with AD cortical morphology were overexpressed or underexpressed in excitatory neurons, oligodendrocytes, and astrocytes. Complexity alterations of the cerebral surface may be associated with a range of biological processes and molecular mechanisms, including immune responses. The present findings may contribute to a more comprehensive understanding of brain morphological patterns in AD patients.
Page 50 of 1391387 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.