Sort by:
Page 35 of 1421417 results

Gender and Ethnicity Bias of Text-to-Image Generative Artificial Intelligence in Medical Imaging, Part 2: Analysis of DALL-E 3.

Currie G, Hewis J, Hawk E, Rohren E

pubmed logopapersJun 4 2025
Disparity among gender and ethnicity remains an issue across medicine and health science. Only 26%-35% of trainee radiologists are female, despite more than 50% of medical students' being female. Similar gender disparities are evident across the medical imaging professions. Generative artificial intelligence text-to-image production could reinforce or amplify gender biases. <b>Methods:</b> In March 2024, DALL-E 3 was utilized via GPT-4 to generate a series of individual and group images of medical imaging professionals: radiologist, nuclear medicine physician, radiographer, nuclear medicine technologist, medical physicist, radiopharmacist, and medical imaging nurse. Multiple iterations of images were generated using a variety of prompts. Collectively, 120 images were produced for evaluation of 524 characters. All images were independently analyzed by 3 expert reviewers from medical imaging professions for apparent gender and skin tone. <b>Results:</b> Collectively (individual and group images), 57.4% (<i>n</i> = 301) of medical imaging professionals were depicted as male, 42.4% (<i>n</i> = 222) as female, and 91.2% (<i>n</i> = 478) as having a light skin tone. The male gender representation was 65% for radiologists, 62% for nuclear medicine physicians, 52% for radiographers, 56% for nuclear medicine technologists, 62% for medical physicists, 53% for radiopharmacists, and 26% for medical imaging nurses. For all professions, this overrepresents men compared with women. There was no representation of persons with a disability. <b>Conclusion:</b> This evaluation reveals a significant overrepresentation of the male gender associated with generative artificial intelligence text-to-image production using DALL-E 3 across the medical imaging professions. Generated images have a disproportionately high representation of white men, which is not representative of the diversity of the medical imaging professions.

Enhanced risk stratification for stage II colorectal cancer using deep learning-based CT classifier and pathological markers to optimize adjuvant therapy decision.

Huang YQ, Chen XB, Cui YF, Yang F, Huang SX, Li ZH, Ying YJ, Li SY, Li MH, Gao P, Wu ZQ, Wen G, Wang ZS, Wang HX, Hong MP, Diao WJ, Chen XY, Hou KQ, Zhang R, Hou J, Fang Z, Wang ZN, Mao Y, Wee L, Liu ZY

pubmed logopapersJun 4 2025
Current risk stratification for stage II colorectal cancer (CRC) has limited accuracy in identifying patients who would benefit from adjuvant chemotherapy, leading to potential over- or under-treatment. We aimed to develop a more precise risk stratification system by integrating artificial intelligence-based imaging analysis with pathological markers. We analyzed 2,992 stage II CRC patients from 12 centers. A deep learning classifier (Swin Transformer Assisted Risk-stratification for CRC, STAR-CRC) was developed using multi-planar CT images from 1,587 patients (training:internal validation=7:3) and validated in 1,405 patients from 8 independent centers, which stratified patients into low-, uncertain-, and high-risk groups. To further refine the uncertain-risk group, a composite score based on pathological markers (pT4 stage, number of lymph nodes sampled, perineural invasion, and lymphovascular invasion) was applied, forming the intelligent risk integration system for stage II CRC (IRIS-CRC). IRIS-CRC was compared against the guideline-based risk stratification system (GRSS-CRC) for prediction performance and validated in the validation dataset. IRIS-CRC stratified patients into four prognostic groups with distinct 3-year disease-free survival rates (≥95%, 95-75%, 75-55%, ≤55%). Upon external validation, compared to GRSS-CRC, IRIS-CRC downstaged 27.1% of high-risk patients into Favorable group, while upstaged 6.5% of low-risk patients into Very Poor prognosis group who might require more aggressive treatment. In the GRSS-CRC intermediate-risk group of the external validation dataset, IRIS-CRC reclassified 40.1% as Favorable prognosis and 7.0% as Very Poor prognosis. IRIS-CRC's performance maintained generalized in both chemotherapy and non-chemotherapy cohorts. IRIS-CRC offers a more precise and personalized risk assessment than current guideline-based risk factors, potentially sparing low-risk patients from unnecessary adjuvant chemotherapy while identifying high-risk individuals for more aggressive treatment. This novel approach holds promise for improving clinical decision-making and outcomes in stage II CRC.

Validation study comparing Artificial intelligence for fully automatic aortic aneurysms Segmentation and diameter Measurements On contrast and non-contrast enhanced computed Tomography (ASMOT).

Gatinot A, Caradu C, Stephan L, Foret T, Rinckenbach S

pubmed logopapersJun 4 2025
Accurate aortic diameter measurements are essential for diagnosis, surveillance, and procedural planning in aortic disease. Semi-automatic methods remain widely used but require manual corrections, which can be time-consuming and operator-dependent. Artificial intelligence (AI)-driven fully automatic methods may offer improved efficiency and measurement accuracy. This study aims to validate a fully automatic method against a semi-automatic approach using computed tomography angiography (CTA) and non-contrast CT scans. A monocentric retrospective comparative study was conducted on patients who underwent endovascular aortic repair (EVAR) for infrarenal, juxta-renal or thoracic aneurysms and a control group. Maximum aortic wall-to-wall diameters were measured before and after repair using a fully automatic software (PRAEVAorta2®, Nurea, Bordeaux, France) and compared to measurements performed by two vascular surgeons using a semi-automatic approach on CTA and non-contrast CT scans. Correlation coefficients (Pearson's R) and absolute differences were calculated to assess agreement. A total of 120 CT scans (60 CTA and 60 non-contrast CT) were included, comprising 23 EVAR, 4 thoracic EVAR, 1 fenestrated EVAR, and 4 control cases. Strong correlations were observed between the fully automatic and semi-automatic measurements in both CTA and non-contrast CT. For CTA, correlation coefficients ranged from 0.94 to 0.96 (R<sup>2</sup> = 0.88-0.92), while for non-contrast CT, they ranged from 0.87 to 0.89 (R<sup>2</sup> = 0.76-0.79). Median absolute differences in aortic diameter measurements varied between 1.1 mm and 4.2 mm across the different anatomical locations. The fully automatic method demonstrated a significantly faster processing time, with a median execution time of 73 seconds (IQR: 57-91) compared to 700 (IQR: 613-800) for the semi-automatic method (p < 0.001). The fully automatic method demonstrated strong agreement with semi-automatic measurements for both CTA and non-contrast CT, before and after endovascular repair in different aortic locations, with significantly reduced analysis time. This method could improve workflow efficiency in clinical practice and research applications.

Deep learning model for differentiating thyroid eye disease and orbital myositis on computed tomography (CT) imaging.

Ha SK, Lin LY, Shi M, Wang M, Han JY, Lee NG

pubmed logopapersJun 3 2025
To develop a deep learning model using orbital computed tomography (CT) imaging to accurately distinguish thyroid eye disease (TED) and orbital myositis, two conditions with overlapping clinical presentations. Retrospective, single-center cohort study spanning 12 years including normal controls, TED, and orbital myositis patients with orbital imaging and examination by an oculoplastic surgeon. A deep learning model employing a Visual Geometry Group-16 network was trained on various binary combinations of TED, orbital myositis, and controls using single slices of coronal orbital CT images. A total of 1628 images from 192 patients (110 TED, 51 orbital myositis, 31 controls) were included. The primary model comparing orbital myositis and TED had accuracy of 98.4% and area under the receiver operating characteristic curve (AUC) of 0.999. In detecting orbital myositis, it had a sensitivity, specificity, and F1 score of 0.964, 0.994, and 0.984, respectively. Deep learning models can differentiate TED and orbital myositis based on a single, coronal orbital CT image with high accuracy. Their ability to distinguish these conditions based not only on extraocular muscle enlargement but also other salient features suggests potential applications in diagnostics and treatment beyond these conditions.

High-Throughput Phenotyping of the Symptoms of Alzheimer Disease and Related Dementias Using Large Language Models: Cross-Sectional Study.

Cheng Y, Malekar M, He Y, Bommareddy A, Magdamo C, Singh A, Westover B, Mukerji SS, Dickson J, Das S

pubmed logopapersJun 3 2025
Alzheimer disease and related dementias (ADRD) are complex disorders with overlapping symptoms and pathologies. Comprehensive records of symptoms in electronic health records (EHRs) are critical for not only reaching an accurate diagnosis but also supporting ongoing research studies and clinical trials. However, these symptoms are frequently obscured within unstructured clinical notes in EHRs, making manual extraction both time-consuming and labor-intensive. We aimed to automate symptom extraction from the clinical notes of patients with ADRD using fine-tuned large language models (LLMs), compare its performance to regular expression-based symptom recognition, and validate the results using brain magnetic resonance imaging (MRI) data. We fine-tuned LLMs to extract ADRD symptoms across the following 7 domains: memory, executive function, motor, language, visuospatial, neuropsychiatric, and sleep. We assessed the algorithm's performance by calculating the area under the receiver operating characteristic curve (AUROC) for each domain. The extracted symptoms were then validated in two analyses: (1) predicting ADRD diagnosis using the counts of extracted symptoms and (2) examining the association between ADRD symptoms and MRI-derived brain volumes. Symptom extraction across the 7 domains achieved high accuracy with AUROCs ranging from 0.97 to 0.99. Using the counts of extracted symptoms to predict ADRD diagnosis yielded an AUROC of 0.83 (95% CI 0.77-0.89). Symptom associations with brain volumes revealed that a smaller hippocampal volume was linked to memory impairments (odds ratio 0.62, 95% CI 0.46-0.84; P=.006), and reduced pallidum size was associated with motor impairments (odds ratio 0.73, 95% CI 0.58-0.90; P=.04). These results highlight the accuracy and reliability of our high-throughput ADRD phenotyping algorithm. By enabling automated symptom extraction, our approach has the potential to assist with differential diagnosis, as well as facilitate clinical trials and research studies of dementia.

Upper Airway Volume Predicts Brain Structure and Cognition in Adolescents.

Kanhere A, Navarathna N, Yi PH, Parekh VS, Pickle J, Cloak CC, Ernst T, Chang L, Li D, Redline S, Isaiah A

pubmed logopapersJun 3 2025
One in ten children experiences sleep-disordered breathing (SDB). Untreated SDB is associated with poor cognition, but the underlying mechanisms are less understood. We assessed the relationship between magnetic resonance imaging (MRI)-derived upper airway volume and children's cognition and regional cortical gray matter volumes. We used five-year data from the Adolescent Brain Cognitive Development study (n=11,875 children, 9-10 years at baseline). Upper airway volumes were derived using a deep learning model applied to 5,552,640 brain MRI slices. The primary outcome was the Total Cognition Composite score from the National Institutes of Health Toolbox (NIH-TB). Secondary outcomes included other NIH-TB measures and cortical gray matter volumes. The habitual snoring group had significantly smaller airway volumes than non-snorers (mean difference=1.2 cm<sup>3</sup>; 95% CI, 1.0-1.4 cm<sup>3</sup>; P<0.001). Deep learning-derived airway volume predicted the Total Cognition Composite score (estimated mean difference=3.68 points; 95% CI, 2.41-4.96; P<0.001) per one-unit increase in the natural log of airway volume (~2.7-fold raw volume increase). This airway volume increase was also associated with an average 0.02 cm<sup>3</sup> increase in right temporal pole volume (95% CI, 0.01-0.02 cm<sup>3</sup>; P<0.001). Similar airway volume predicted most NIH-TB domain scores and multiple frontal and temporal gray matter volumes. These brain volumes mediated the relationship between airway volume and cognition. We demonstrate a novel application of deep learning-based airway segmentation in a large pediatric cohort. Upper airway volume is a potential biomarker for cognitive outcomes in pediatric SDB, offers insights into neurobiological mechanisms, and informs future studies on risk stratification. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Comparisons of AI automated segmentation techniques to manual segmentation techniques of the maxilla and maxillary sinus for CT or CBCT scans-A Systematic review.

Park JH, Hamimi M, Choi JJE, Figueredo CMS, Cameron MA

pubmed logopapersJun 3 2025
Accurate segmentation of the maxillary sinus from medical images is essential for diagnostic purposes and surgical planning. Manual segmentation of the maxillary sinus, while the gold standard, is time consuming and requires adequate training. To overcome this problem, AI enabled automatic segmentation software's developed. The purpose of this review is to systematically analyse the current literature to investigate the accuracy and efficiency of automatic segmentation techniques of the maxillary sinus to manual segmentation. A systematic approach to perform a thorough analysis of the existing literature using PRISMA guidelines. Data for this study was obtained from Pubmed, Medline, Embase, and Google Scholar databases. The inclusion and exclusion eligibility criteria were used to shortlist relevant studies. The sample size, anatomical structures segmented, experience of operators, type of manual segmentation software used, type of automatic segmentation software used, statistical comparative method used, and length of time of segmentation were analysed. This systematic review presents 10 studies that compared the accuracy and efficiency of automatic segmentation of the maxillary sinus to manual segmentation. All the studies included in this study were found to have a low risk of bias. Samples sizes ranged from 3 to 144, a variety of operators were used to manually segment the CBCT and segmentation was made primarily to 3D slicer and Mimics software. The comparison was primarily made to Unet architecture softwares, with the dice-coefficient being the primary means of comparison. This systematic review showed that automatic segmentation technique was consistently faster than manual segmentation techniques and over 90% accurate when compared to the gold standard of manual segmentation.

Lymph node ultrasound in lymphoproliferative disorders: clinical characteristics and applications.

Tavarozzi R, Lombardi A, Scarano F, Staiano L, Trattelli G, Farro M, Castellino A, Coppola C

pubmed logopapersJun 3 2025
Superficial lymph node (LN) enlargement is a common ultrasonographic finding and can be associated with a broad spectrum of conditions, from benign reactive hyperplasia to malignant lymphoproliferative disorders (LPDs). LPDs, which include various hematologic malignancies affecting lymphoid tissue, present with diverse immune-morphological and clinical features, making differentiation from other malignant causes of lymphadenopathy challenging. Radiologic assessment is crucial in characterizing lymphadenopathy, with ultrasonography serving as a noninvasive and widely available imaging modality. High-resolution ultrasound allows the evaluation of key features such as LN size, shape, border definition, echogenicity, and the presence of abnormal cortical thickening, loss of the fatty hilum, or altered vascular patterns, which aid in distinguishing benign from malignant processes. This review aims to describe the ultrasonographic characteristics of lymphadenopathy, offering essential diagnostic insights to differentiate malignant disorders, particularly LPDs. We will discuss standard ultrasound techniques, including grayscale imaging and Doppler ultrasound, and explore more advanced methods such as contrast-enhanced ultrasound (CEUS), elastography, and artificial intelligence-assisted imaging, which are gaining prominence in LN evaluation. By highlighting these imaging modalities, we aim to enhance the diagnostic accuracy of ultrasonography in lymphadenopathy assessment and improve early detection of LPDs and other malignant conditions.

Prediction of etiology and prognosis based on hematoma location of spontaneous intracerebral hemorrhage: a multicenter diagnostic study.

Liang J, Tan W, Xie S, Zheng L, Li C, Zhong Y, Li J, Zhou C, Zhang Z, Zhou Z, Gong P, Chen X, Zhang L, Cheng X, Zhang Q, Lu G

pubmed logopapersJun 3 2025
The location of the hemorrhagic of spontaneous intracerebral hemorrhage (sICH) is clinically pivotal for both identifying its etiology and prognosis, but comprehensive and quantitative modeling approach has yet to be thoroughly explored. We employed lesion-symptom mapping to extract the location features of sICH. We registered patients' non-contrast computed tomography image and hematoma masks with standard human brain templates to identify specific affected brain regions. Then, we generated hemorrhage probabilistic maps of different etiologies and prognoses. By integrating radiomics and clinical features into multiple logistic regression models, we developed and validated optimal etiological and prognostic models across three centers, comprising 1162 sICH patients. Hematomas of different etiology have unique spatial distributions. The location-based features demonstrated robust classification of the etiology of spontaneous intracerebral hemorrhage (sICH), with a mean area under the curve (AUC) of 0.825 across diverse datasets. These features provided significant incremental value when integrated into predictive models (fusion model mean AUC = 0.915), outperforming models relying solely on clinical features (mean AUC = 0.828). In prognostic assessments, both hematoma location (mean AUC = 0.762) and radiomic features (mean AUC = 0.837) contributed substantial incremental predictive value, as evidenced by the fusion model's mean AUC of 0.873, compared to models utilizing clinical features alone (mean AUC = 0.771). Our results show that location features were more intrinsically robust, generalizable relative, strong interpretability to the complex modeling of radiomics, our approach demonstrated a novel interpretable, streamlined, comprehensive etiologic classification and prognostic prediction framework for sICH.

How do medical institutions co-create artificial intelligence solutions with commercial startups?

Grootjans W, Krainska U, Rezazade Mehrizi MH

pubmed logopapersJun 3 2025
As many radiology departments embark on adopting artificial intelligence (AI) solutions in their clinical practice, they face the challenge that commercial applications often do not fit with their needs. As a result, they engage in a co-creation process with technology companies to collaboratively develop and implement AI solutions. Despite its importance, the process of co-creating AI solutions is under-researched, particularly regarding the range of challenges that may occur and how medical and technological parties can monitor, assess, and guide their co-creation process through an effective collaboration framework. Drawing on the multi-case study of three co-creation projects at an academic medical center in the Netherlands, we examine how co-creation processes happen through different scenarios, depending on the extent to which the two parties engage in "resourcing," "adaptation," and "reconfiguration." We offer a relational framework that helps involved parties monitor, assess, and guide their collaborations in co-creating AI solutions. The framework allows them to discover novel use-cases and reconsider their established assumptions and practices for developing AI solutions, also for redesigning their technological systems, clinical workflow, and their legal and organizational arrangements. Using the proposed framework, we identified distinct co-creation journeys with varying outcomes, which could be mapped onto the framework to diagnose, monitor, and guide collaborations toward desired results. The outcomes of co-creation can vary widely. The proposed framework enables medical institutions and technology companies to assess challenges and make adjustments. It can assist in steering their collaboration toward desired goals. Question How can medical institutions and AI startups effectively co-create AI solutions for radiology, ensuring alignment with clinical needs while steering collaboration effectively? Findings This study provides a co-creation framework allowing assessment of project progress, stakeholder engagement, as well as guidelines for radiology departments to steer co-creation of AI. Clinical relevance By actively involving radiology professionals in AI co-creation, this study demonstrates how co-creation helps bridge the gap between clinical needs and AI development, leading to clinically relevant, user-friendly solutions that enhance the radiology workflow.
Page 35 of 1421417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.