Sort by:
Page 344 of 3863853 results

Coronary Computed Tomographic Angiography to Optimize the Diagnostic Yield of Invasive Angiography for Low-Risk Patients Screened With Artificial Intelligence: Protocol for the CarDIA-AI Randomized Controlled Trial.

Petch J, Tabja Bortesi JP, Sheth T, Natarajan M, Pinilla-Echeverri N, Di S, Bangdiwala SI, Mosleh K, Ibrahim O, Bainey KR, Dobranowski J, Becerra MP, Sonier K, Schwalm JD

pubmed logopapersMay 21 2025
Invasive coronary angiography (ICA) is the gold standard in the diagnosis of coronary artery disease (CAD). Being invasive, it carries rare but serious risks including myocardial infarction, stroke, major bleeding, and death. A large proportion of elective outpatients undergoing ICA have nonobstructive CAD, highlighting the suboptimal use of this test. Coronary computed tomographic angiography (CCTA) is a noninvasive option that provides similar information with less risk and is recommended as a first-line test for patients with low-to-intermediate risk of CAD. Leveraging artificial intelligence (AI) to appropriately direct patients to ICA or CCTA based on the predicted probability of disease may improve the efficiency and safety of diagnostic pathways. he CarDIA-AI (Coronary computed tomographic angiography to optimize the Diagnostic yield of Invasive Angiography for low-risk patients screened with Artificial Intelligence) study aims to evaluate whether AI-based risk assessment for obstructive CAD implemented within a centralized triage process can optimize the use of ICA in outpatients referred for nonurgent ICA. CarDIA-AI is a pragmatic, open-label, superior randomized controlled trial involving 2 Canadian cardiac centers. A total of 252 adults referred for elective outpatient ICA will be randomized 1:1 to usual care (directly proceeding to ICA) or to triage using an AI-based decision support tool. The AI-based decision support tool was developed using referral information from over 37,000 patients and uses a light gradient boosting machine model to predict the probability of obstructive CAD based on 42 clinically relevant predictors, including patient referral information, demographic characteristics, risk factors, and medical history. Participants in the intervention arm will have their ICA referral forms and medical charts reviewed, and select details entered into the decision support tool, which recommends CCTA or ICA based on the patient's predicted probability of obstructive CAD. All patients will receive the selected imaging modality within 6 weeks of referral and will be subsequently followed for 90 days. The primary outcome is the proportion of normal or nonobstructive CAD diagnosed via ICA and will be assessed using a 2-sided z test to compare the patients referred for cardiac investigation with normal or nonobstructive CAD diagnosed through ICA between the intervention and control groups. Secondary outcomes include the number of angiograms avoided and the diagnostic yield of ICA. Recruitment began on January 9, 2025, and is expected to conclude in mid to late 2025. As of April 14, 2025, we have enrolled 81 participants. Data analysis will begin once data collection is completed. We expect to submit the results for publication in 2026. CarDIA-AI will be the first randomized controlled trial using AI to optimize patient selection for CCTA versus ICA, potentially improving diagnostic efficiency, avoiding unnecessary complications of ICA, and improving health care resource usage. ClinicalTrials.gov NCT06648239; https://clinicaltrials.gov/study/NCT06648239/. DERR1-10.2196/71726.

Mammography-based artificial intelligence for breast cancer detection, diagnosis, and BI-RADS categorization using multi-view and multi-level convolutional neural networks.

Tan H, Wu Q, Wu Y, Zheng B, Wang B, Chen Y, Du L, Zhou J, Fu F, Guo H, Fu C, Ma L, Dong P, Xue Z, Shen D, Wang M

pubmed logopapersMay 21 2025
We developed an artificial intelligence system (AIS) using multi-view multi-level convolutional neural networks for breast cancer detection, diagnosis, and BI-RADS categorization support in mammography. Twenty-four thousand eight hundred sixty-six breasts from 12,433 Asian women between August 2012 and December 2018 were enrolled. The study consisted of three parts: (1) evaluation of AIS performance in malignancy diagnosis; (2) stratified analysis of BI-RADS 3-4 subgroups with AIS; and (3) reassessment of BI-RADS 0 breasts with AIS assistance. We further evaluate AIS by conducting a counterbalance-designed AI-assisted study, where ten radiologists read 1302 cases with/without AIS assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, and F1 score were measured. The AIS yielded AUC values of 0.995, 0.933, and 0.947 for malignancy diagnosis in the validation set, testing set 1, and testing set 2, respectively. Within BI-RADS 3-4 subgroups with pathological results, AIS downgraded 83.1% of false-positives into benign groups, and upgraded 54.1% of false-negatives into malignant groups. AIS also successfully assisted radiologists in identifying 7 out of 43 malignancies initially diagnosed with BI-RADS 0, with a specificity of 96.7%. In the counterbalance-designed AI-assisted study, the average AUC across ten readers significantly improved with AIS assistance (p = 0.001). AIS can accurately detect and diagnose breast cancer on mammography and further serve as a supportive tool for BI-RADS categorization. An AI risk assessment tool employing deep learning algorithms was developed and validated for enhancing breast cancer diagnosis from mammograms, to improve risk stratification accuracy, particularly in patients with dense breasts, and serve as a decision support aid for radiologists. The false positive and negative rates of mammography diagnosis remain high. The AIS can yield a high AUC for malignancy diagnosis. The AIS is important in stratifying BI-RADS categorization.

Systematic review on the impact of deep learning-driven worklist triage on radiology workflow and clinical outcomes.

Momin E, Cook T, Gershon G, Barr J, De Cecco CN, van Assen M

pubmed logopapersMay 21 2025
To perform a systematic review on the impact of deep learning (DL)-based triage for reducing diagnostic delays and improving patient outcomes in peer-reviewed and pre-print publications. A search was conducted of primary research studies focused on DL-based worklist optimization for diagnostic imaging triage published on multiple databases from January 2018 until July 2024. Extracted data included study design, dataset characteristics, workflow metrics including report turnaround time and time-to-treatment, and patient outcome differences. Further analysis between clinical settings and integration modality was investigated using nonparametric statistics. Risk of bias was assessed with the risk of bias in non-randomized studies-of interventions (ROBINS-I) checklist. A total of 38 studies from 20 publications, involving 138,423 images, were analyzed. Workflow interventions concerned pulmonary embolism (n = 8), stroke (n = 3), intracranial hemorrhage (n = 12), and chest conditions (n = 15). Patients in the post DL-triage group had shorter median report turnaround times: a mean difference of 12.3 min (IQR: -25.7, -7.6) for pulmonary embolism, 20.5 min (IQR: -32.1, -9.3) for stroke, 4.3 min (IQR: -8.6, 1.3) for intracranial hemorrhage and 29.7 min (IQR: -2947.7, -18.3) for chest diseases. Sub-group analysis revealed that reductions varied per clinical environment and relative prevalence rates but were the highest when algorithms actively stratified and reordered the radiological worklist, with reductions of -43.7% in report turnaround time compared to -7.6% from widget-based systems (p < 0.01). DL-based triage systems had comparable report turnaround time improvements, especially in outpatient and high-prevalence settings, suggesting that AI-based triage holds promise in alleviating radiology workloads. Question Can DL-based triage address lengthening imaging report turnaround times and improve patient outcomes across distinct clinical environments? Findings DL-based triage improved report turnaround time across disease groups, with higher reductions reported in high-prevalence or lower acuity settings. Clinical relevance DL-based workflow prioritization is a reliable tool for reducing diagnostic imaging delay for time-sensitive disease across clinical settings. However, further research and reliable metrics are needed to provide specific recommendations with regards to false-negative examinations and multi-condition prioritization.

Deep Learning with Domain Randomization in Image and Feature Spaces for Abdominal Multiorgan Segmentation on CT and MRI Scans.

Shi Y, Wang L, Qureshi TA, Deng Z, Xie Y, Li D

pubmed logopapersMay 21 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a deep learning segmentation model that can segment abdominal organs on CT and MR images with high accuracy and generalization ability. Materials and Methods In this study, an extended nnU-Net model was trained for abdominal organ segmentation. A domain randomization method in both the image and feature space was developed to improve the generalization ability under cross-site and cross-modality settings on public prostate MRI and abdominal CT and MRI datasets. The prostate MRI dataset contains data from multiple health care institutions with domain shifts. The abdominal CT and MRI dataset is structured for cross-modality evaluation, training on one modality (eg, MRI) and testing on the other (eg, CT). This domain randomization method was then used to train a segmentation model with enhanced generalization ability on the abdominal multiorgan segmentation challenge (AMOS) dataset to improve abdominal CT and MR multiorgan segmentation, and the model was compared with two commonly used segmentation algorithms (TotalSegmentator and MRSegmentator). Model performance was evaluated using the Dice similarity coefficient (DSC). Results The proposed domain randomization method showed improved generalization ability on the cross-site and cross-modality datasets compared with the state-of-the-art methods. The segmentation model using this method outperformed two other publicly available segmentation models on data from unseen test domains (Average DSC: 0.88 versus 0.79; <i>P</i> < .001 and 0.88 versus 0.76; <i>P</i> < .001). Conclusion The combination of image and feature domain randomizations improved the accuracy and generalization ability of deep learning-based abdominal segmentation on CT and MR images. © RSNA, 2025.

An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study.

Zhong L, Shi L, Li W, Zhou L, Wang K, Gu L

pubmed logopapersMay 21 2025
Our objective is to develop and validate a deep learning radiomics nomogram (DLRN) based on preoperative ultrasound images and clinical features, for predicting the malignancy of thyroid nodules with indeterminate cytology (Bethesda III). Between June 2017 and June 2022, we conducted a retrospective study on 194 patients with surgically confirmed indeterminate cytology (Bethesda III) in our hospital. The training and internal validation cohorts were comprised of 155 and 39 patients, in a 7:3 ratio. To facilitate external validation, we selected an additional 80 patients from each of the remaining two medical centers. Utilizing preoperative ultrasound data, we obtained imaging markers that encompass both deep learning and manually radiomic features. After feature selection, we developed a comprehensive diagnostic model to evaluate the predictive value for Bethesda III benign and malignant cases. The model's diagnostic accuracy, calibration, and clinical applicability were systematically assessed. The results showed that the prediction model, which integrated 512 DTL features extracted from the pre-trained Resnet34 network, ultrasound radiomics, and clinical features, exhibited superior stability in distinguishing between benign and malignant indeterminate thyroid nodules (Bethesda Class III). In the validation set, the AUC was 0.92 (95% CI: 0.831-1.000), and the accuracy, sensitivity, specificity, precision, and recall were 0.897, 0.882, 0.909, 0.882, and 0.882, respectively. The comprehensive multidimensional data model based on deep transfer learning, ultrasound radiomics features, and clinical characteristics can effectively distinguish the benign and malignant indeterminate thyroid nodules (Bethesda Class III), providing valuable guidance for treatment selection in patients with indeterminate thyroid nodules (Bethesda Class III).

Synthesizing [<sup>18</sup>F]PSMA-1007 PET bone images from CT images with GAN for early detection of prostate cancer bone metastases: a pilot validation study.

Chai L, Yao X, Yang X, Na R, Yan W, Jiang M, Zhu H, Sun C, Dai Z, Yang X

pubmed logopapersMay 21 2025
[<sup>18</sup>F]FDG PET/CT scan combined with [<sup>18</sup>F]PSMA-1007 PET/CT scan is commonly conducted for detecting bone metastases in prostate cancer (PCa). However, it is expensive and may expose patients to more radiation hazards. This study explores deep learning (DL) techniques to synthesize [<sup>18</sup>F]PSMA-1007 PET bone images from CT bone images for the early detection of bone metastases in PCa, which may reduce additional PET/CT scans and relieve the burden on patients. We retrospectively collected paired whole-body (WB) [<sup>18</sup>F]PSMA-1007 PET/CT images from 152 patients with clinical and pathological diagnosis results, including 123 PCa and 29 cases of benign lesions. The average age of the patients was 67.48 ± 10.87 years, and the average lesion size was 8.76 ± 15.5 mm. The paired low-dose CT and PET images were preprocessed and segmented to construct the WB bone structure images. 152 subjects were randomly stratified into training, validation, and test groups in the number of 92:41:19. Two generative adversarial network (GAN) models-Pix2pix and Cycle GAN-were trained to synthesize [<sup>18</sup>F]PSMA-1007 PET bone images from paired CT bone images. The performance of two synthesis models was evaluated using quantitative metrics of mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index metrics (SSIM), as well as the target-to-background ratio (TBR). The results of DL-based image synthesis indicated that the synthesis of [<sup>18</sup>F]PSMA-1007 PET bone images from low-dose CT bone images was highly feasible. The Pix2pix model performed better with an SSIM of 0.97, PSNR of 44.96, MSE of 0.80, and MAE of 0.10, respectively. The TBRs of bone metastasis lesions calculated on DL-synthesized PET bone images were highly correlated with those of real PET bone images (Pearson's r > 0.90) and had no significant differences (p < 0.05). It is feasible to generate synthetic [<sup>18</sup>F]PSMA-1007 PET bone images from CT bone images by using DL techniques with reasonable accuracy, which can provide information for early detection of PCa bone metastases.

FasNet: a hybrid deep learning model with attention mechanisms and uncertainty estimation for liver tumor segmentation on LiTS17.

Singh R, Gupta S, Almogren A, Rehman AU, Bharany S, Altameem A, Choi J

pubmed logopapersMay 21 2025
Liver cancer, especially hepatocellular carcinoma (HCC), remains one of the most fatal cancers globally, emphasizing the critical need for accurate tumor segmentation to enable timely diagnosis and effective treatment planning. Traditional imaging techniques, such as CT and MRI, rely on manual interpretation, which can be both time-intensive and subject to variability. This study introduces FasNet, an innovative hybrid deep learning model that combines ResNet-50 and VGG-16 architectures, incorporating Channel and Spatial Attention mechanisms alongside Monte Carlo Dropout to improve segmentation precision and reliability. FasNet leverages ResNet-50's robust feature extraction and VGG-16's detailed spatial feature capture to deliver superior liver tumor segmentation accuracy. Channel and spatial attention mechanisms could selectively focus on the most relevant features and spatial regions for suitable segmentation with good accuracy and reliability. Monte Carlo Dropout estimates uncertainty and adds robustness, which is critical for high-stakes medical applications. Tested on the LiTS17 dataset, FasNet achieved a Dice Coefficient of 0.8766 and a Jaccard Index of 0.8487, surpassing several state-of-the-art methods. The Channel and Spatial Attention mechanisms in FasNet enhance feature selection, focusing on the most relevant spatial and channel information, while Monte Carlo Dropout improves model robustness and uncertainty estimation. These results position FasNet as a powerful diagnostic tool, offering precise and automated liver tumor segmentation that aids in early detection and precise treatment, ultimately enhancing patient outcomes.

Predictive machine learning and multimodal data to develop highly sensitive, composite biomarkers of disease progression in Friedreich ataxia.

Saha S, Corben LA, Selvadurai LP, Harding IH, Georgiou-Karistianis N

pubmed logopapersMay 21 2025
Friedreich ataxia (FRDA) is a rare, inherited progressive movement disorder for which there is currently no cure. The field urgently requires more sensitive, objective, and clinically relevant biomarkers to enhance the evaluation of treatment efficacy in clinical trials and to speed up the process of drug discovery. This study pioneers the development of clinically relevant, multidomain, fully objective composite biomarkers of disease severity and progression, using multimodal neuroimaging and background data (i.e., demographic, disease history, genetics). Data from 31 individuals with FRDA and 31 controls from a longitudinal multimodal natural history study IMAGE-FRDA, were included. Using an elasticnet predictive machine learning (ML) regression model, we derived a weighted combination of background, structural MRI, diffusion MRI, and quantitative susceptibility imaging (QSM) measures that predicted Friedreich ataxia rating scale (FARS) with high accuracy (R<sup>2</sup> = 0.79, root mean square error (RMSE) = 13.19). This composite also exhibited strong sensitivity to disease progression over two years (Cohen's d = 1.12), outperforming the sensitivity of the FARS score alone (d = 0.88). The approach was validated using the Scale for the assessment and rating of ataxia (SARA), demonstrating the potential and robustness of ML-derived composites to surpass individual biomarkers and act as complementary or surrogate markers of disease severity and progression. However, further validation, refinement, and the integration of additional data modalities will open up new opportunities for translating these biomarkers into clinical practice and clinical trials for FRDA, as well as other rare neurodegenerative diseases.

An automated deep learning framework for brain tumor classification using MRI imagery.

Aamir M, Rahman Z, Bhatti UA, Abro WA, Bhutto JA, He Z

pubmed logopapersMay 21 2025
The precise and timely diagnosis of brain tumors is essential for accelerating patient recovery and preserving lives. Brain tumors exhibit a variety of sizes, shapes, and visual characteristics, requiring individualized treatment strategies for each patient. Radiologists require considerable proficiency to manually detect brain malignancies. However, tumor recognition remains inefficient, imprecise, and labor-intensive in manual procedures, underscoring the need for automated methods. This study introduces an effective approach for identifying brain lesions in magnetic resonance imaging (MRI) images, minimizing dependence on manual intervention. The proposed method improves image clarity by combining guided filtering techniques with anisotropic Gaussian side windows (AGSW). A morphological analysis is conducted prior to segmentation to exclude non-tumor regions from the enhanced MRI images. Deep neural networks segment the images, extracting high-quality regions of interest (ROIs) and multiscale features. Identifying salient elements is essential and is accomplished through an attention module that isolates distinctive features while eliminating irrelevant information. An ensemble model is employed to classify brain tumors into different categories. The proposed technique achieves an overall accuracy of 99.94% and 99.67% on the publicly available brain tumor datasets BraTS2020 and Figshare, respectively. Furthermore, it surpasses existing technologies in terms of automation and robustness, thereby enhancing the entire diagnostic process.

Adversarial artificial intelligence in radiology: Attacks, defenses, and future considerations.

Dietrich N, Gong B, Patlas MN

pubmed logopapersMay 21 2025
Artificial intelligence (AI) is rapidly transforming radiology, with applications spanning disease detection, lesion segmentation, workflow optimization, and report generation. As these tools become more integrated into clinical practice, new concerns have emerged regarding their vulnerability to adversarial attacks. This review provides an in-depth overview of adversarial AI in radiology, a topic of growing relevance in both research and clinical domains. It begins by outlining the foundational concepts and model characteristics that make machine learning systems particularly susceptible to adversarial manipulation. A structured taxonomy of attack types is presented, including distinctions based on attacker knowledge, goals, timing, and computational frequency. The clinical implications of these attacks are then examined across key radiology tasks, with literature highlighting risks to disease classification, image segmentation and reconstruction, and report generation. Potential downstream consequences such as patient harm, operational disruption, and loss of trust are discussed. Current mitigation strategies are reviewed, spanning input-level defenses, model training modifications, and certified robustness approaches. In parallel, the role of broader lifecycle and safeguard strategies are considered. By consolidating current knowledge across technical and clinical domains, this review helps identify gaps, inform future research priorities, and guide the development of robust, trustworthy AI systems in radiology.
Page 344 of 3863853 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.