Sort by:
Page 3 of 14132 results

Interpretable Deep Learning Approaches for Reliable GI Image Classification: A Study with the HyperKvasir Dataset

Wahid, S. B., Rothy, Z. T., News, R. K., Rieyan, S. A.

medrxiv logopreprintJul 23 2025
Deep learning has emerged as a promising tool for automating gastrointestinal (GI) disease diagnosis. However, multi-class GI disease classification remains underexplored. This study addresses this gap by presenting a framework that uses advanced models like InceptionNetV3 and ResNet50, combined with boosting algorithms (XGB, LGBM), to classify lower GI abnormalities. InceptionNetV3 with XGB achieved the best recall of 0.81 and an F1 score of 0.90. To assist clinicians in understanding model decisions, the Grad-CAM technique, a form of explainable AI, was employed to highlight the critical regions influencing predictions, fostering trust in these systems. This approach significantly improves both the accuracy and reliability of GI disease diagnosis.

CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound

Yu, M., Peterson, M. R., Burgoine, K., Harbaugh, T., Olupot-Olupot, P., Gladstone, M., Hagmann, C., Cowan, F. M., Weeks, A., Morton, S. U., Mulondo, R., Mbabazi-Kabachelor, E., Schiff, S. J., Monga, V.

medrxiv logopreprintJul 22 2025
This paper addresses the problem of detecting possible serious bacterial infection (pSBI) of infancy, i.e. a clinical presentation consistent with bacterial sepsis in newborn infants using cranial ultrasound (cUS) images. The captured image set for each patient enables multiview imagery: coronal and sagittal, with geometric overlap. To exploit this geometric relation, we develop a new learning framework, called the intersection-guided Crossview Local-and Image-level Fusion Network (CLIF-Net). Our technique employs two distinct convolutional neural network branches to extract features from coronal and sagittal images with newly developed multi-level fusion blocks. Specifically, we leverage the spatial position of these images to locate the intersecting region. We then identify and enhance the semantic features from this region across multiple levels using cross-attention modules, facilitating the acquisition of mutually beneficial and more representative features from both views. The final enhanced features from the two views are then integrated and projected through the image-level fusion layer, outputting pSBI and non-pSBI class probabilities. We contend that our method of exploiting multi-view cUS images enables a first of its kind, robust 3D representation tailored for pSBI detection. When evaluated on a dataset of 302 cUS scans from Mbale Regional Referral Hospital in Uganda, CLIF-Net demonstrates substantially enhanced performance, surpassing the prevailing state-of-the-art infection detection techniques.

An ensemble multimodal approach for predicting first episode psychosis using structural MRI and cognitive assessments

Zhang, S.

medrxiv logopreprintJul 21 2025
Classification between first episode psychosis (FEP) patients and healthy controls is of particular interest to the study of schizophrenia. However, predicting psychosis with cognitive assessments alone is prone to human errors and often lacks biological evidence to back up the findings. In this work, we combined a multimodal dataset of structural MRI and cognitive data to disentangle the detection of first-episode psychosis with a machine learning approach. For this purpose, we proposed a robust detection pipeline that explores the variables in high-order feature space. We applied the pipeline to Human Connectome Project for Early Psychosis (HCP-EP) dataset with 108 participants in EP and 47 controls. The pipeline demonstrated strong performance with 74.67% balanced accuracy on this task. Further feature analysis shows that the model is capable of identifying verified causative biological factors for the occurrence of psychosis based on volumetric MRI measurements, which suggests the potential of data-driven approaches for the search for neuroimaging biomarkers in future studies.

Cascaded Multimodal Deep Learning in the Differential Diagnosis, Progression Prediction, and Staging of Alzheimer's and Frontotemporal Dementia

Guarnier, G., Reinelt, J., Molloy, E. N., Mihai, P. G., Einaliyan, P., Valk, S., Modestino, A., Ugolini, M., Mueller, K., Wu, Q., Babayan, A., Castellaro, M., Villringer, A., Scherf, N., Thierbach, K., Schroeter, M. L., Alzheimers Disease Neuroimaging Initiative,, Australian Imaging Biomarkers and Lifestyle flagship study of ageing,, Frontotemporal Lobar Degeneration Neuroimaging Initiative,

medrxiv logopreprintJul 21 2025
Dementia is a complex condition whose multifaceted nature poses significant challenges in the diagnosis, prognosis, and treatment of patients. Despite the availability of large open-source data fueling a wealth of promising research, effective translation of preclinical findings to clinical practice remains difficult. This barrier is largely due to the complexity of unstructured and disparate preclinical and clinical data, which traditional analytical methods struggle to handle. Novel analytical techniques involving Deep Learning (DL), however, are gaining significant traction in this regard. Here, we have investigated the potential of a cascaded multimodal DL-based system (TelDem), assessing the ability to integrate and analyze a large, heterogeneous dataset (n=7,159 patients), applied to three clinically relevant use cases. Using a Cascaded Multi-Modal Mixing Transformer (CMT), we assessed TelDems validity and (using a Cross-Modal Fusion Norm - CMFN) model explainability in (i) differential diagnosis between healthy individuals, AD, and three sub-types of frontotemporal lobar degeneration (ii) disease staging from healthy cognition to mild cognitive impairment (MCI) and AD, and (iii) predicting progression from MCI to AD. Our findings show that the CMT enhances diagnostic and prognostic accuracy when incorporating multimodal data compared to unimodal modeling and that cerebrospinal fluid (CSF) biomarkers play a key role in accurate model decision making. These results reinforce the power of DL technology in tapping deeper into already existing data, thereby accelerating preclinical dementia research by utilizing clinically relevant information to disentangle complex dementia pathophysiology.

Prediction of OncotypeDX recurrence score using H&E stained WSI images

Cohen, S., Shamai, G., Sabo, E., Cretu, A., Barshack, I., Goldman, T., Bar-Sela, G., Pearson, A. T., Huo, D., Howard, F. M., Kimmel, R., Mayer, C.

medrxiv logopreprintJul 21 2025
The OncotypeDX 21-gene assay is a widely adopted tool for estimating recurrence risk and informing chemotherapy decisions in early-stage, hormone receptor-positive, HER2-negative breast cancer. Although informative, its high cost and long turnaround time limit accessibility and delay treatment in low- and middle-income countries, creating a need for alternative solutions. This study presents a deep learning-based approach for predicting OncotypeDX recurrence scores directly from hematoxylin and eosin-stained whole slide images. Our approach leverages a deep learning foundation model pre-trained on 171,189 slides via self-supervised learning, which is fine-tuned for our task. The model was developed and validated using five independent cohorts, out of which three are external. On the two external cohorts that include OncotypeDX scores, the model achieved an AUC of 0.825 and 0.817, and identified 21.9% and 25.1% of the patients as low-risk with sensitivity of 0.97 and 0.95 and negative predictive value of 0.97 and 0.96, showing strong generalizability despite variations in staining protocols and imaging devices. Kaplan-Meier analysis demonstrated that patients classified as low-risk by the model had a significantly better prognosis than those classified as high-risk, with a hazard ratio of 4.1 (P<0.001) and 2.0 (P<0.01) on the two external cohorts that include patient outcomes. This artificial intelligence-driven solution offers a rapid, cost-effective, and scalable alternative to genomic testing, with the potential to enhance personalized treatment planning, especially in resource-constrained settings.

DREAM: A framework for discovering mechanisms underlying AI prediction of protected attributes

Gadgil, S. U., DeGrave, A. J., Janizek, J. D., Xu, S., Nwandu, L., Fonjungo, F., Lee, S.-I., Daneshjou, R.

medrxiv logopreprintJul 21 2025
Recent advances in Artificial Intelligence (AI) have started disrupting the healthcare industry, especially medical imaging, and AI devices are increasingly being deployed into clinical practice. Such classifiers have previously demonstrated the ability to discern a range of protected demographic attributes (like race, age, sex) from medical images with unexpectedly high performance, a sensitive task which is difficult even for trained physicians. In this study, we motivate and introduce a general explainable AI (XAI) framework called DREAM (DiscoveRing and Explaining AI Mechanisms) for interpreting how AI models trained on medical images predict protected attributes. Focusing on two modalities, radiology and dermatology, we are successfully able to train high-performing classifiers for predicting race from chest x-rays (ROC-AUC score of [~]0.96) and sex from dermoscopic lesions (ROC-AUC score of [~]0.78). We highlight how incorrect use of these demographic shortcuts can have a detrimental effect on the performance of a clinically relevant downstream task like disease diagnosis under a domain shift. Further, we employ various XAI techniques to identify specific signals which can be leveraged to predict sex. Finally, we propose a technique, which we callremoval via balancing, to quantify how much a signal contributes to the classification performance. Using this technique and the signals identified, we are able to explain [~]15% of the total performance for radiology and [~]42% of the total performance for dermatology. We envision DREAM to be broadly applicable to other modalities and demographic attributes. This analysis not only underscores the importance of cautious AI application in healthcare but also opens avenues for improving the transparency and reliability of AI-driven diagnostic tools.

Detecting Fifth Metatarsal Fractures on Radiographs through the Lens of Smartphones: A FIXUS AI Algorithm

Taseh, A., Shah, A., Eftekhari, M., Flaherty, A., Ebrahimi, A., Jones, S., Nukala, V., Nazarian, A., Waryasz, G., Ashkani-Esfahani, S.

medrxiv logopreprintJul 18 2025
BackgroundFifth metatarsal (5MT) fractures are common but challenging to diagnose, particularly with limited expertise or subtle fractures. Deep learning shows promise but faces limitations due to image quality requirements. This study develops a deep learning model to detect 5MT fractures from smartphone-captured radiograph images, enhancing accessibility of diagnostic tools. MethodsA retrospective study included patients aged >18 with 5MT fractures (n=1240) and controls (n=1224). Radiographs (AP, oblique, lateral) from Electronic Health Records (EHR) were obtained and photographed using a smartphone, creating a new dataset (SP). Models using ResNet 152V2 were trained on EHR, SP, and combined datasets, then evaluated on a separate smartphone test dataset (SP-test). ResultsOn validation, the SP model achieved optimal performance (AUROC: 0.99). On the SP-test dataset, the EHR models performance decreased (AUROC: 0.83), whereas SP and combined models maintained high performance (AUROC: 0.99). ConclusionsSmartphone-specific deep learning models effectively detect 5MT fractures, suggesting their practical utility in resource-limited settings.

A clinically relevant morpho-molecular classification of lung neuroendocrine tumours

Sexton-Oates, A., Mathian, E., Candeli, N., Lim, Y., Voegele, C., Di Genova, A., Mange, L., Li, Z., van Weert, T., Hillen, L. M., Blazquez-Encinas, R., Gonzalez-Perez, A., Morrison, M. L., Lauricella, E., Mangiante, L., Bonheme, L., Moonen, L., Absenger, G., Altmuller, J., Degletagne, C., Brustugun, O. T., Cahais, V., Centonze, G., Chabrier, A., Cuenin, C., Damiola, F., de Montpreville, V. T., Deleuze, J.-F., Dingemans, A.-M. C., Fadel, E., Gadot, N., Ghantous, A., Graziano, P., Hofman, P., Hofman, V., Ibanez-Costa, A., Lacomme, S., Lopez-Bigas, N., Lund-Iversen, M., Milione, M., Muscarella, L

medrxiv logopreprintJul 18 2025
Lung neuroendocrine tumours (NETs, also known as carcinoids) are rapidly rising in incidence worldwide but have unknown aetiology and limited therapeutic options beyond surgery. We conducted multi-omic analyses on over 300 lung NETs including whole-genome sequencing (WGS), transcriptome profiling, methylation arrays, spatial RNA sequencing, and spatial proteomics. The integration of multi-omic data provides definitive proof of the existence of four strikingly different molecular groups that vary in patient characteristics, genomic and transcriptomic profiles, microenvironment, and morphology, as much as distinct diseases. Among these, we identify a new molecular group, enriched for highly aggressive supra-carcinoids, that displays an immune-rich microenvironment linked to tumour--macrophage crosstalk, and we uncover an undifferentiated cell population within supra-carcinoids, explaining their molecular and behavioural link to high-grade lung neuroendocrine carcinomas. Deep learning models accurately identified the Ca A1, Ca A2, and Ca B groups based on morphology alone, outperforming current histological criteria. The characteristic tumour microenvironment of supra-carcinoids and the validation of a panel of immunohistochemistry markers for the other three molecular groups demonstrates that these groups can be accurately identified based solely on morphological features, facilitating their implementation in the clinical setting. Our proposed morpho-molecular classification highlights group-specific therapeutic opportunities, including DLL3, FGFR, TERT, and BRAF inhibitors. Overall, our findings unify previously proposed molecular classifications and refine the lung cancer map by revealing novel tumour types and potential treatments, with significant implications for prognosis and treatment decision-making.

A conversational artificial intelligence based web application for medical conversations: a prototype for a chatbot

Pires, J. G.

medrxiv logopreprintJul 17 2025
BackgroundArtificial Intelligence (AI) has evolved through various trends, with different subfields gaining prominence over time. Currently, Conversational Artificial Intelligence (CAI)--particularly Generative AI--is at the forefront. CAI models are primarily focused on text-based tasks and are commonly deployed as chatbots. Recent advancements by OpenAI have enabled the integration of external, independently developed models, allowing chatbots to perform specialized, task-oriented functions beyond general language processing. ObjectiveThis study aims to develop a smart chatbot that integrates large language models (LLMs) from OpenAI with specialized domain-specific models, such as those used in medical image diagnostics. The system leverages transfer learning via Googles Teachable Machine to construct image-based classifiers and incorporates a diabetes detection model developed in TensorFlow.js. A key innovation is the chatbots ability to extract relevant parameters from user input, trigger the appropriate diagnostic model, interpret the output, and deliver responses in natural language. The overarching goal is to demonstrate the potential of combining LLMs with external models to build multimodal, task-oriented conversational agents. MethodsTwo image-based models were developed and integrated into the chatbot system. The first analyzes chest X-rays to detect viral and bacterial pneumonia. The second uses optical coherence tomography (OCT) images to identify ocular conditions such as drusen, choroidal neovascularization (CNV), and diabetic macular edema (DME). Both models were incorporated into the chatbot to enable image-based medical query handling. In addition, a text-based model was constructed to process physiological measurements for diabetes prediction using TensorFlow.js. The architecture is modular: new diagnostic models can be added without redesigning the chatbot, enabling straightforward functional expansion. ResultsThe findings demonstrate effective integration between the chatbot and the diagnostic models, with only minor deviations from expected behavior. Additionally, a stub function was implemented within the chatbot to schedule medical appointments based on the severity of a patients condition, and it was specifically tested with the OCT and X-ray models. ConclusionsThis study demonstrates the feasibility of developing advanced AI systems--including image-based diagnostic models and chatbot integration--by leveraging Artificial Intelligence as a Service (AIaaS). It also underscores the potential of AI to enhance user experiences in bioinformatics, paving the way for more intuitive and accessible interfaces in the field. Looking ahead, the modular nature of the chatbot allows for the integration of additional diagnostic models as the system evolves.

Patient-Specific and Interpretable Deep Brain Stimulation Optimisation Using MRI and Clinical Review Data

Mikroulis, A., Lasica, A., Filip, P., Bakstein, E., Novak, D.

medrxiv logopreprintJul 17 2025
BackgroundOptimisation of Deep Brain Stimulation (DBS) settings is a key aspect in achieving clinical efficacy in movement disorders, such as the Parkinsons disease. Modern techniques attempt to solve the problem through data-intensive statistical and machine learning approaches, adding significant overhead to the existing clinical workflows. Here, we present an optimisation approach for DBS electrode contact and current selection, grounded in routinely collected MRI data, well-established tools (Lead-DBS) and, optionally, clinical review records. MethodsThe pipeline, packaged in a cross-platform tool, uses lead reconstruction data and simulation of volume of tissue activated to estimate the contacts in optimal position relative to the target structure, and suggest optimal stimulation current. The tool then allows further interactive user optimisation of the current settings. Existing electrode contact evaluations can be optionally included in the calculation process for further fine-tuning and adverse effect avoidance. ResultsBased on a sample of 177 implanted electrode reconstructions from 89 Parkinsons disease patients, we demonstrate that DBS parameter setting by our algorithm is more effective in covering the target structure (Wilcoxon p<6e-12, Hedges g>0.34) and minimising electric field leakage to neighbouring regions (p<2e-15, g>0.84) compared to expert parameter settings. ConclusionThe proposed automated method, for optimisation of the DBS electrode contact and current selection shows promising results and is readily applicable to existing clinical workflows. We demonstrate that the algorithmically selected contacts perform better than manual selections according to electric field calculations, allowing for a comparable clinical outcome without the iterative optimisation procedure.
Page 3 of 14132 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.