Sort by:
Page 24 of 2982975 results

Dynamic neural network modulation associated with rumination in major depressive disorder: a prospective observational comparative analysis of cognitive behavioral therapy and pharmacotherapy.

Katayama N, Shinagawa K, Hirano J, Kobayashi Y, Nakagawa A, Umeda S, Kamiya K, Tajima M, Amano M, Nogami W, Ihara S, Noda S, Terasawa Y, Kikuchi T, Mimura M, Uchida H

pubmed logopapersAug 6 2025
Cognitive behavioral therapy (CBT) and pharmacotherapy are primary treatments for major depressive disorder (MDD). However, their differential effects on the neural networks associated with rumination, or repetitive negative thinking, remain poorly understood. This study included 135 participants, whose rumination severity was measured using the rumination response scale (RRS) and whose resting brain activity was measured using functional magnetic resonance imaging (fMRI) at baseline and after 16 weeks. MDD patients received either standard CBT based on Beck's manual (n = 28) or pharmacotherapy (n = 32). Using a hidden Markov model, we observed that MDD patients exhibited increased activity in the default mode network (DMN) and decreased occupancies in the sensorimotor and central executive networks (CEN). The DMN occurrence rate correlated positively with rumination severity. CBT, while not specifically designed to target rumination, reduced DMN occurrence rate and facilitated transitions toward a CEN-dominant brain state as part of broader therapeutic effects. Pharmacotherapy shifted DMN activity to the posterior region of the brain. These findings suggest that CBT and pharmacotherapy modulate brain network dynamics related to rumination through distinct therapeutic pathways.

Altered gray matter morphometry in psychogenic erectile dysfunction patients: A Surface-based morphometry study.

Tian Z, Ma Z, Dou B, Huang X, Li G, Chang D, Yin T, Zhang P

pubmed logopapersAug 6 2025
Psychogenic erectile dysfunction (pED) is a prevalent male sexual dysfunction lacking organic etiology. Endeavors have been made in previous studies to disclose the brain pathological mechanisms of pED. However, the cortical morphological characteristics in pED patients remained largely unknown. This study enrolled 50 pED patients and 50 healthy controls (HC). The surface-based morphometry (SBM) analysis was conducted, and the between-group comparisons of the four cortical morphological parameters, including the cortical thickness, sulcus depth, gyrification index, and fractal dimension, were performed to investigate the cortical morphological alterations in pED patients, followed by correlation analysis between clinical data and SBM metrics. Furthermore, a classifier was developed based on a support vector classification algorithm and cortical morphological features to explore the feasibility of discriminating between pED patients and HC at an individual level. The results demonstrated that pED patients manifested consistent alteration in cortical morphology cross metrics in the orbitofrontal cortex, anterior and middle cingulate cortex, dorsolateral prefrontal cortex, and precentral gyrus, which were significantly correlated with the clinical symptoms in pED patients. Additionally, the classifier built based on 11 cortical morphological features achieved an accuracy of 82% in discriminating pED patients from HC. The current study provided new evidence of cortical morphological aberrations in pED patients, which deepened our understanding of the central pathology pattern of pED and was expected to facilitate the objective diagnosis of pED and the development of neuromodulation techniques targeting the alterations above.

Current applications of deep learning in vertebral fracture diagnosis.

Gu Y, Wang Y, Li M, Wang R

pubmed logopapersAug 6 2025
Deep learning is a machine learning method that mimics neural networks to build decision-making models. Recent advances in computing power and algorithms have enhanced deep learning's potential for vertebral fracture diagnosis in medical imaging. The application of deep learning in vertebral fracture diagnosis, including the identification of vertebrae and classification of vertebral fracture types, might significantly reduce the workload of radiologists and orthopedic surgeons as well as greatly improve the accuracy of vertebral fracture diagnosis. In this narrative review, we will summarize the application of deep learning models in the diagnosis of vertebral fractures.

Predicting language outcome after stroke using machine learning: in search of the big data benefit.

Saranti M, Neville D, White A, Rotshtein P, Hope TMH, Price CJ, Bowman H

pubmed logopapersAug 6 2025
Accurate prediction of post-stroke language outcomes using machine learning offers the potential to enhance clinical treatment and rehabilitation for aphasic patients. This study of 758 English speaking stroke patients from the PLORAS project explores the impact of sample size on the performance of logistic regression and a deep learning (ResNet-18) model in predicting language outcomes from neuroimaging and impairment-relevant tabular data. We assessed the performance of both models on two key language tasks from the Comprehensive Aphasia Test: Spoken Picture Description and Naming, using a learning curve approach. Contrary to expectations, the simpler logistic regression model performed comparably or better than the deep learning model (with overlapping confidence intervals), with both models showing an accuracy plateau around 80% for sample sizes larger than 300 patients. Principal Component Analysis revealed that the dimensionality of the neuroimaging data could be reduced to as few as 20 (or even 2) dominant components without significant loss in accuracy, suggesting that classification may be driven by simple patterns such as lesion size. The study highlights both the potential limitations of current dataset size in achieving further accuracy gains and the need for larger datasets to capture more complex patterns, as some of our results indicate that we might not have reached an absolute classification performance ceiling. Overall, these findings provide insights into the practical use of machine learning for predicting aphasia outcomes and the potential benefits of much larger datasets in enhancing model performance.

AI-derived CT biomarker score for robust COVID-19 mortality prediction across multiple waves and regions using machine learning.

De Smet K, De Smet D, De Jaeger P, Dewitte J, Martens GA, Buls N, De Mey J

pubmed logopapersAug 6 2025
This study aimed to develop a simple, interpretable model using routinely available data for predicting COVID-19 mortality at admission, addressing limitations of complex models, and to provide a statistically robust framework for controlled clinical use, managing model uncertainty for responsible healthcare application. Data from Belgium's first COVID-19 wave (UZ Brussel, n = 252) were used for model development. External validation utilized data from unvaccinated patients during the late second and early third waves (AZ Delta, n = 175). Various machine learning methods were trained and compared for diagnostic performance after data preprocessing and feature selection. The final model, the M3-score, incorporated three features: age, white blood cell (WBC) count, and AI-derived total lung involvement (TOTAL<sub>AI</sub>) quantified from CT scans using Icolung software. The M3-score demonstrated strong classification performance in the training cohort (AUC 0.903) and clinically useful performance in the external validation dataset (AUC 0.826), indicating generalizability potential. To enhance clinical utility and interpretability, predicted probabilities were categorized into actionable likelihood ratio (LR) intervals: highly unlikely (LR 0.0), unlikely (LR 0.13), gray zone (LR 0.85), more likely (LR 2.14), and likely (LR 8.19) based on the training cohort. External validation suggested temporal and geographical robustness, though some variability in AUC and LR performance was observed, as anticipated in real-world settings. The parsimonious M3-score, integrating AI-based CT quantification with clinical and laboratory data, offers an interpretable tool for predicting in-hospital COVID-19 mortality, showing robust training performance. Observed performance variations in external validation underscore the need for careful interpretation and further extensive validation across international cohorts to confirm wider applicability and robustness before widespread clinical adoption.

The development of a multimodal prediction model based on CT and MRI for the prognosis of pancreatic cancer.

Dou Z, Lin J, Lu C, Ma X, Zhang R, Zhu J, Qin S, Xu C, Li J

pubmed logopapersAug 6 2025
To develop and validate a hybrid radiomics model to predict the overall survival in pancreatic cancer patients and identify risk factors that affect patient prognosis. We conducted a retrospective analysis of 272 pancreatic cancer patients diagnosed at the First Affiliated Hospital of Soochow University from January 2013 to December 2023, and divided them into a training set and a test set at a ratio of 7:3. Pre-treatment contrast-enhanced computed tomography (CT), magnetic resonance imaging (MRI) images, and clinical features were collected. Dimensionality reduction was performed on the radiomics features using principal component analysis (PCA), and important features with non-zero coefficients were selected using the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. In the training set, we built clinical prediction models using both random survival forests (RSF) and traditional Cox regression analysis. These models included a radiomics model based on contrast-enhanced CT, a radiomics model based on MRI, a clinical model, 3 bimodal models combining two types of features, and a multimodal model combining radiomics features with clinical features. Model performance evaluation in the test set was based on two dimensions: discrimination and calibration. In addition, risk stratification was performed in the test set based on predicted risk scores to evaluate the model's prognostic utility. The RSF-based hybrid model performed best with a C-index of 0.807 and a Brier score of 0.101, outperforming the COX hybrid model (C-index of 0.726 and a Brier score of 0.145) and other unimodal and bimodal models. The SurvSHAP(t) plot highlighted CA125 as the most important variable. In the test set, patients were stratified into high- and low-risk groups based on the predicted risk scores, and Kaplan-Meier analysis demonstrated a significant survival difference between the two groups (p < 0.0001). A multi-modal model using radiomics based on clinical tabular data and contrast-enhanced CT and MRI was developed by RSF, presenting strengths in predicting prognosis in pancreatic cancer patients.

Development and validation of the multidimensional machine learning model for preoperative risk stratification in papillary thyroid carcinoma: a multicenter, retrospective cohort study.

Feng JW, Zhang L, Yang YX, Qin RJ, Liu SQ, Qin AC, Jiang Y

pubmed logopapersAug 6 2025
This study aims to develop and validate a multi-modal machine learning model for preoperative risk stratification in papillary thyroid carcinoma (PTC), addressing limitations of current systems that rely on postoperative pathological features. We analyzed 974 PTC patients from three medical centers in China using a multi-modal approach integrating: (1) clinical indicators, (2) immunological indices, (3) ultrasound radiomics features, and (4) CT radiomics features. Our methodology employed gradient boosting machine for feature selection and random forest for classification, with model interpretability provided through SHapley Additive exPlanations (SHAP) analysis. The model was validated on internal (n = 225) and two external cohorts (n = 51, n = 174). The final 15-feature model achieved AUCs of 0.91, 0.84, and 0.77 across validation cohorts, improving to 0.96, 0.95, and 0.89 after cohort-specific refitting. SHAP analysis revealed CT texture features, ultrasound morphological features, and immune-inflammatory markers as key predictors, with consistent patterns across validation sites despite center-specific variations. Subgroup analysis showed superior performance in tumors > 1 cm and patients without extrathyroidal extension. Our multi-modal machine learning approach provides accurate preoperative risk stratification for PTC with robust cross-center applicability. This computational framework for integrating heterogeneous imaging and clinical data demonstrates the potential of multi-modal joint learning in healthcare imaging to transform clinical decision-making by enabling personalized treatment planning.

Clinical information prompt-driven retinal fundus image for brain health evaluation.

Tong N, Hui Y, Gou SP, Chen LX, Wang XH, Chen SH, Li J, Li XS, Wu YT, Wu SL, Wang ZC, Sun J, Lv H

pubmed logopapersAug 6 2025
Brain volume measurement serves as a critical approach for assessing brain health status. Considering the close biological connection between the eyes and brain, this study aims to investigate the feasibility of estimating brain volume through retinal fundus imaging integrated with clinical metadata, and to offer a cost-effective approach for assessing brain health. Based on clinical information, retinal fundus images, and neuroimaging data derived from a multicenter, population-based cohort study, the KaiLuan Study, we proposed a cross-modal correlation representation (CMCR) network to elucidate the intricate co-degenerative relationships between the eyes and brain for 755 subjects. Specifically, individual clinical information, which has been followed up for as long as 12 years, was encoded as a prompt to enhance the accuracy of brain volume estimation. Independent internal validation and external validation were performed to assess the robustness of the proposed model. Root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) metrics were employed to quantitatively evaluate the quality of synthetic brain images derived from retinal imaging data. The proposed framework yielded average RMSE, PSNR, and SSIM values of 98.23, 35.78 dB, and 0.64, respectively, which significantly outperformed 5 other methods: multi-channel Variational Autoencoder (mcVAE), Pixel-to-Pixel (Pixel2pixel), transformer-based U-Net (TransUNet), multi-scale transformer network (MT-Net), and residual vision transformer (ResViT). The two- (2D) and three-dimensional (3D) visualization results showed that the shape and texture of the synthetic brain images generated by the proposed method most closely resembled those of actual brain images. Thus, the CMCR framework accurately captured the latent structural correlations between the fundus and the brain. The average difference between predicted and actual brain volumes was 61.36 cm<sup>3</sup>, with a relative error of 4.54%. When all of the clinical information (including age and sex, daily habits, cardiovascular factors, metabolic factors, and inflammatory factors) was encoded, the difference was decreased to 53.89 cm<sup>3</sup>, with a relative error of 3.98%. Based on the synthesized brain MR images from retinal fundus images, the volumes of brain tissues could be estimated with high accuracy. This study provides an innovative, accurate, and cost-effective approach to characterize brain health status through readily accessible retinal fundus images. NCT05453877 ( https://clinicaltrials.gov/ ).

Assessing the spatial relationship between mandibular third molars and the inferior alveolar canal using a deep learning-based approach: a proof-of-concept study.

Lyu W, Lou S, Huang J, Huang Z, Zheng H, Liao H, Qiao Y, OuYang K

pubmed logopapersAug 6 2025
The distance between the mandibular third molar (M3) and the mandibular canal (MC) is a key factor in assessing the risk of injury to the inferior alveolar nerve (IAN). However, existing deep learning systems have not yet been able to accurately quantify the M3-MC distance in 3D space. The aim of this study was to develop and validate a deep learning-based system for accurate measurement of M3-MC spatial relationships in cone-beam computed tomography (CBCT) images and to evaluate its accuracy against conventional methods. We propose an innovative approach for low-resource environments, using DeeplabV3 + for semantic segmentation of CBCT-extracted 2D images, followed by multi-category 3D reconstruction and visualization. Based on the reconstruction model, we applied the KD-Tree algorithm to measure the spatial minimum distance between M3 and MC. Through internal validation with randomly selected CBCT images, we compared the differences between the AI system, conventional measurement methods on the CBCT, and the gold standard measured by senior experts. Statistical analysis was performed using one-way ANOVA with Tukey HSD post-hoc tests (p < 0.05), employing multiple error metrics for comprehensive evaluation. One-way ANOVA revealed significant differences among measurement methods. Subsequent Tukey HSD post-hoc tests showed significant differences between the AI reconstruction model and conventional methods. The measurement accuracy of the AI system compared to the gold standard was 0.19 for mean error (ME), 0.18 for mean absolute error (MAE), 0.69 for mean square error (MSE), 0.83 for root mean square error (RMSE), and 0.96 for coefficient of determination (R<sup>2</sup>) (p < 0.01). These results indicate that the proposed AI system is highly accurate and reliable in M3-MC distance measurement and provides a powerful tool for preoperative risk assessment of M3 extraction.

Development of a deep learning based approach for multi-material decomposition in spectral CT: a proof of principle in silico study.

Rajagopal JR, Rapaka S, Farhadi F, Abadi E, Segars WP, Nowak T, Sharma P, Pritchard WF, Malayeri A, Jones EC, Samei E, Sahbaee P

pubmed logopapersAug 6 2025
Conventional approaches to material decomposition in spectral CT face challenges related to precise algorithm calibration across imaged conditions and low signal quality caused by variable object size and reduced dose. In this proof-of-principle study, a deep learning approach to multi-material decomposition was developed to quantify iodine, gadolinium, and calcium in spectral CT. A dual-phase network architecture was trained using synthetic datasets containing computational models of cylindrical and virtual patient phantoms. Classification and quantification performance was evaluated across a range of patient size and dose parameters. The model was found to accurately classify (accuracy: cylinders - 98%, virtual patients - 97%) and quantify materials (mean absolute percentage difference: cylinders - 8-10%, virtual patients - 10-15%) in both datasets. Performance in virtual patient phantoms improved as the hybrid training dataset included a larger contingent of virtual patient phantoms (accuracy: 48% with 0 virtual patients to 97% with 8 virtual patients). For both datasets, the algorithm was able to maintain strong performance under challenging conditions of large patient size and reduced dose. This study shows the validity of a deep-learning based approach to multi-material decomposition trained with in-silico images that can overcome the limitations of conventional material decomposition approaches.
Page 24 of 2982975 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.