Sort by:
Page 224 of 3143139 results

Early-stage lung cancer detection via thin-section low-dose CT reconstruction combined with AI in non-high risk populations: a large-scale real-world retrospective cohort study.

Ji G, Luo W, Zhu Y, Chen B, Wang M, Jiang L, Yang M, Song W, Yao P, Zheng T, Yu H, Zhang R, Wang C, Ding R, Zhuo X, Chen F, Li J, Tang X, Xian J, Song T, Tang J, Feng M, Shao J, Li W

pubmed logopapersJun 1 2025
Current lung cancer screening guidelines recommend annual low-dose computed tomography (LDCT) for high-risk individuals. However, the effectiveness of LDCT in non-high-risk individuals remains inadequately explored. With the incidence of lung cancer steadily increasing among non-high-risk individuals, this study aims to assess the risk of lung cancer in non-high-risk individuals and evaluate the potential of thin-section LDCT reconstruction combined with artificial intelligence (LDCT-TRAI) as a screening tool. A real-world cohort study on lung cancer screening was conducted at the West China Hospital of Sichuan University from January 2010 to July 2021. Participants were screened using either LDCT-TRAI or traditional thick-section LDCT without AI (traditional LDCT) . The AI system employed was the uAI-ChestCare software. Lung cancer diagnoses were confirmed through pathological examination. Among the 259 121 enrolled non-high-risk participants, 87 260 (33.7%) had positive screening results. Within 1 year, 728 (0.3%) participants were diagnosed with lung cancer, of whom 87.1% (634/728) were never-smokers, and 92.7% (675/728) presented with stage I disease. Compared with traditional LDCT, LDCT-TRAI demonstrated a higher lung cancer detection rate (0.3% vs. 0.2%, <i>P</i> < 0.001), particularly for stage I cancers (94.4% vs. 83.2%, <i>P</i> < 0.001), and was associated with improved survival outcomes (5-year overall survival rate: 95.4% vs. 81.3%, <i>P</i> < 0.0001). These findings highlight the importance of expanding lung cancer screening to non-high-risk populations, especially never-smokers. LDCT-TRAI outperformed traditional LDCT in detecting early-stage cancers and improving survival outcomes, underscoring its potential as a more effective screening tool for early lung cancer detection in this population.

multiPI-TransBTS: A multi-path learning framework for brain tumor image segmentation based on multi-physical information.

Zhu H, Huang J, Chen K, Ying X, Qian Y

pubmed logopapersJun 1 2025
Brain Tumor Segmentation (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors. However, due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task. In this study, we propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy. The model leverages spatial information, semantic information, and multi-modal imaging data, addressing the inherent heterogeneity in brain tumor characteristics. The multiPI-TransBTS framework consists of an encoder, an Adaptive Feature Fusion (AFF) module, and a multi-source, multi-scale feature decoder. The encoder incorporates a multi-branch architecture to separately extract modality-specific features from different MRI sequences. The AFF module fuses information from multiple sources using channel-wise and element-wise attention, ensuring effective feature recalibration. The decoder combines both common and task-specific features through a Task-Specific Feature Introduction (TSFI) strategy, producing accurate segmentation outputs for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) regions. Comprehensive evaluations on the BraTS2019 and BraTS2020 datasets demonstrate the superiority of multiPI-TransBTS over the state-of-the-art methods. The model consistently achieves better Dice coefficients, Hausdorff distances, and Sensitivity scores, highlighting its effectiveness in addressing the BraTS challenges. Our results also indicate the need for further exploration of the balance between precision and recall in the ET segmentation task. The proposed framework represents a significant advancement in BraTS, with potential implications for improving clinical outcomes for brain tumor patients.

A computed tomography-based deep learning radiomics model for predicting the gender-age-physiology stage of patients with connective tissue disease-associated interstitial lung disease.

Long B, Li R, Wang R, Yin A, Zhuang Z, Jing Y, E L

pubmed logopapersJun 1 2025
To explore the feasibility of using a diagnostic model constructed with deep learning-radiomics (DLR) features extracted from chest computed tomography (CT) images to predict the gender-age-physiology (GAP) stage of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). The data of 264 CTD-ILD patients were retrospectively collected. GAP Stage I, II, III patients are 195, 56, 13 cases respectively. The latter two stages were combined into one group. The patients were randomized into a training set and a validation set. Single-input models were separately constructed using the selected radiomics and DL features, while DLR model was constructed from both sets of features. For all models, the support vector machine (SVM) and logistic regression (LR) algorithms were used for construction. The nomogram models were generated by integrating age, gender, and DLR features. The DLR model outperformed the radiomics and DL models in both the training set and the validation set. The predictive performance of the DLR model based on the LR algorithm was the best among all the feature-based models (AUC = 0.923). The comprehensive models had even greater performance in predicting the GAP stage of CTD-ILD patients. The comprehensive model using the SVM algorithm had the best performance of the two models (AUC = 0.951). The DLR model extracted from CT images can assist in the clinical prediction of the GAP stage of CTD-ILD patients. A nomogram showed even greater performance in predicting the GAP stage of CTD-ILD patients.

Boosting polyp screening with improved point-teacher weakly semi-supervised.

Du X, Zhang X, Chen J, Li L

pubmed logopapersJun 1 2025
Polyps, like a silent time bomb in the gut, are always lurking and can explode into deadly colorectal cancer at any time. Many methods are attempted to maximize the early detection of colon polyps by screening, however, there are still face some challenges: (i) the scarcity of per-pixel annotation data and clinical features such as the blurred boundary and low contrast of polyps result in poor performance. (ii) existing weakly semi-supervised methods directly using pseudo-labels to supervise student tend to ignore the value brought by intermediate features in the teacher. To adapt the point-prompt teacher model to the challenging scenarios of complex medical images and limited annotation data, we creatively leverage the diverse inductive biases of CNN and Transformer to extract robust and complementary representation of polyp features (boundary and context). At the same time, a novel designed teacher-student intermediate feature distillation method is introduced rather than just using pseudo-labels to guide student learning. Comprehensive experiments demonstrate that our proposed method effectively handles scenarios with limited annotations and exhibits good segmentation performance. All code is available at https://github.com/dxqllp/WSS-Polyp.

Detection of COVID-19, lung opacity, and viral pneumonia via X-ray using machine learning and deep learning.

Lamouadene H, El Kassaoui M, El Yadari M, El Kenz A, Benyoussef A, El Moutaouakil A, Mounkachi O

pubmed logopapersJun 1 2025
The COVID-19 pandemic has significantly strained healthcare systems, highlighting the need for early diagnosis to isolate positive cases and prevent the spread. This study combines machine learning, deep learning, and transfer learning techniques to automatically diagnose COVID-19 and other pulmonary conditions from radiographic images. First, we used Convolutional Neural Networks (CNNs) and a Support Vector Machine (SVM) classifier on a dataset of 21,165 chest X-ray images. Our model achieved an accuracy of 86.18 %. This approach aids medical experts in rapidly and accurateky detecting lung diseases. Next, we applied transfer learning using ResNet18 combined with SVM on a dataset comprising normal, COVID-19, lung opacity, and viral pneumonia images. This model outperformed traditional methods, with classification rates of 98 % with Stochastic Gradient Descent (SGD), 97 % with Adam, 96 % with RMSProp, and 94 % with Adagrad optimizers. Additionally, we incorporated two additional transfer learning models, EfficientNet-CNN and Xception-CNN, which achieved classification accuracies of 99.20 % and 98.80 %, respectively. However, we observed limitations in dataset diversity and representativeness, which may affect model generalization. Future work will focus on implementing advanced data augmentation techniques and collaborations with medical experts to enhance model performance.This research demonstrates the potential of cutting-edge deep learning techniques to improve diagnostic accuracy and efficiency in medical imaging applications.

Enhancing radiomics features via a large language model for classifying benign and malignant breast tumors in mammography.

Ra S, Kim J, Na I, Ko ES, Park H

pubmed logopapersJun 1 2025
Radiomics is widely used to assist in clinical decision-making, disease diagnosis, and treatment planning for various target organs, including the breast. Recent advances in large language models (LLMs) have helped enhance radiomics analysis. Herein, we sought to improve radiomics analysis by incorporating LLM-learned clinical knowledge, to classify benign and malignant tumors in breast mammography. We extracted radiomics features from the mammograms based on the region of interest and retained the features related to the target task. Using prompt engineering, we devised an input sequence that reflected the selected features and the target task. The input sequence was fed to the chosen LLM (LLaMA variant), which was fine-tuned using low-rank adaptation to enhance radiomics features. This was then evaluated on two mammogram datasets (VinDr-Mammo and INbreast) against conventional baselines. The enhanced radiomics-based method performed better than baselines using conventional radiomics features tested on two mammogram datasets, achieving accuracies of 0.671 for the VinDr-Mammo dataset and 0.839 for the INbreast dataset. Conventional radiomics models require retraining from scratch for an unseen dataset using a new set of features. In contrast, the model developed in this study effectively reused the common features between the training and unseen datasets by explicitly linking feature names with feature values, leading to extensible learning across datasets. Our method performed better than the baseline method in this retraining setting using an unseen dataset. Our method, one of the first to incorporate LLM into radiomics, has the potential to improve radiomics analysis.

Generative adversarial networks in medical image reconstruction: A systematic literature review.

Hussain J, Båth M, Ivarsson J

pubmed logopapersJun 1 2025
Recent advancements in generative adversarial networks (GANs) have demonstrated substantial potential in medical image processing. Despite this progress, reconstructing images from incomplete data remains a challenge, impacting image quality. This systematic literature review explores the use of GANs in enhancing and reconstructing medical imaging data. A document survey of computing literature was conducted using the ACM Digital Library to identify relevant articles from journals and conference proceedings using keyword combinations, such as "generative adversarial networks or generative adversarial network," "medical image or medical imaging," and "image reconstruction." Across the reviewed articles, there were 122 datasets used in 175 instances, 89 top metrics employed 335 times, 10 different tasks with a total count of 173, 31 distinct organs featured in 119 instances, and 18 modalities utilized in 121 instances, collectively depicting significant utilization of GANs in medical imaging. The adaptability and efficacy of GANs were showcased across diverse medical tasks, organs, and modalities, utilizing top public as well as private/synthetic datasets for disease diagnosis, including the identification of conditions like cancer in different anatomical regions. The study emphasized GAN's increasing integration and adaptability in diverse radiology modalities, showcasing their transformative impact on diagnostic techniques, including cross-modality tasks. The intricate interplay between network size, batch size, and loss function refinement significantly impacts GAN's performance, although challenges in training persist. The study underscores GANs as dynamic tools shaping medical imaging, contributing significantly to image quality, training methodologies, and overall medical advancements, positioning them as substantial components driving medical advancements.

The impact of Alzheimer's disease on cortical complexity and its underlying biological mechanisms.

Chen L, Zhou X, Qiao Y, Wang Y, Zhou Z, Jia S, Sun Y, Peng D

pubmed logopapersJun 1 2025
Alzheimer's disease (AD) might impact the complexity of cerebral cortex, and the underlying biological mechanisms responsible for cortical changes in the AD cortex remain unclear. Fifty-eight participants with AD and 67 normal controls underwent high-resolution 3 T structural brain MRI. Using surface-based morphometry (SBM), we created vertex-wise maps for group comparisons in terms of five measures: cortical thickness, fractal dimension, gyrification index, Toro's gyrification index and sulcal depth respectively. Five machine learning (ML) models combining SBM parameters were established to predict AD. In addition, transcription-neuroimaging association analyses, as well as Mendelian randomization of AD and cortical thickness data, were conducted to investigate the genetic mechanisms and biological functions of AD. AD patients exhibited topological changes in cortical complexity, with increased complexity in the frontal and temporal cortex and decreased complexity in the insula cortex, alongside extensive cortical atrophy. Combining different SBM measures could aid disease diagnosis. The genes involved in cell structure support and the immune response were the strongest contributors to cortical anatomical features in AD patients. The identified genes associated with AD cortical morphology were overexpressed or underexpressed in excitatory neurons, oligodendrocytes, and astrocytes. Complexity alterations of the cerebral surface may be associated with a range of biological processes and molecular mechanisms, including immune responses. The present findings may contribute to a more comprehensive understanding of brain morphological patterns in AD patients.

GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models.

Zotova D, Pinon N, Trombetta R, Bouet R, Jung J, Lartizien C

pubmed logopapersJun 1 2025
Research in the cross-modal medical image translation domain has been very productive over the past few years in tackling the scarce availability of large curated multi-modality datasets with the promising performance of GAN-based architectures. However, only a few of these studies assessed task-based related performance of these synthetic data, especially for the training of deep models. We design and compare different GAN-based frameworks for generating synthetic brain[18F]fluorodeoxyglucose (FDG) PET images from T1 weighted MRI data. We first perform standard qualitative and quantitative visual quality evaluation. Then, we explore further impact of using these fake PET data in the training of a deep unsupervised anomaly detection (UAD) model designed to detect subtle epilepsy lesions in T1 MRI and FDG PET images. We introduce novel diagnostic task-oriented quality metrics of the synthetic FDG PET data tailored to our unsupervised detection task, then use these fake data to train a use case UAD model combining a deep representation learning based on siamese autoencoders with a OC-SVM density support estimation model. This model is trained on normal subjects only and allows the detection of any variation from the pattern of the normal population. We compare the detection performance of models trained on 35 paired real MR T1 of normal subjects paired either on 35 true PET images or on 35 synthetic PET images generated from the best performing generative models. Performance analysis is conducted on 17 exams of epilepsy patients undergoing surgery. The best performing GAN-based models allow generating realistic fake PET images of control subject with SSIM and PSNR values around 0.9 and 23.8, respectively and in distribution (ID) with regard to the true control dataset. The best UAD model trained on these synthetic normative PET data allows reaching 74% sensitivity. Our results confirm that GAN-based models are the best suited for MR T1 to FDG PET translation, outperforming transformer or diffusion models. We also demonstrate the diagnostic value of these synthetic data for the training of UAD models and evaluation on clinical exams of epilepsy patients. Our code and the normative image dataset are available.

Accuracy of a deep neural network for automated pulmonary embolism detection on dedicated CT pulmonary angiograms.

Zsarnoczay E, Rapaka S, Schoepf UJ, Gnasso C, Vecsey-Nagy M, Todoran TM, Hagar MT, Kravchenko D, Tremamunno G, Griffith JP, Fink N, Derrick S, Bowman M, Sam H, Tiller M, Godoy K, Condrea F, Sharma P, O'Doherty J, Maurovich-Horvat P, Emrich T, Varga-Szemes A

pubmed logopapersJun 1 2025
To assess the performance of a Deep Neural Network (DNN)-based prototype algorithm for automated PE detection on CTPA scans. Patients who had previously undergone CTPA with three different systems (SOMATOM Force, go.Top, and Definition AS; Siemens Healthineers, Forchheim, Germany) because of suspected PE from September 2022 to January 2023 were retrospectively enrolled in this study (n = 1,000, 58.8 % women). For detailed evaluation, all PE were divided into three location-based subgroups: central arteries, lobar branches, and peripheral regions. Clinical reports served as ground truth. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were determined to evaluate the performance of DNN-based PE detection. Cases were excluded due to incomplete data (n = 32), inconclusive report (n = 17), insufficient contrast detected in the pulmonary trunk (n = 40), or failure of the preprocessing algorithms (n = 8). Therefore, the final cohort included 903 cases with a PE prevalence of 12 % (n = 110). The model achieved a sensitivity, specificity, PPV, and NPV of 84.6, 95.1, 70.5, and 97.8 %, respectively, and delivered an overall accuracy of 93.8 %. Among the false positive cases (n = 39), common sources of error included lung masses, pneumonia, and contrast flow artifacts. Common sources of false negatives (n = 17) included chronic and subsegmental PEs. The proposed DNN-based algorithm provides excellent performance for the detection of PE, suggesting its potential utility to support radiologists in clinical reading and exam prioritization.
Page 224 of 3143139 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.