Sort by:
Page 180 of 1981980 results

New developments in imaging in ALS.

Kleinerova J, Querin G, Pradat PF, Siah WF, Bede P

pubmed logopapersMay 12 2025
Neuroimaging in ALS has contributed considerable academic insights in recent years demonstrating genotype-specific topological changes decades before phenoconversion and characterising longitudinal propagation patterns in specific phenotypes. It has elucidated the radiological underpinnings of specific clinical phenomena such as pseudobulbar affect, apathy, behavioural change, spasticity, and language deficits. Academic concepts such as sexual dimorphism, motor reserve, cognitive reserve, adaptive changes, connectivity-based propagation, pathological stages, and compensatory mechanisms have also been evaluated by imaging. The underpinnings of extra-motor manifestations such as cerebellar, sensory, extrapyramidal and cognitive symptoms have been studied by purpose-designed imaging protocols. Clustering approaches have been implemented to uncover radiologically distinct disease subtypes and machine-learning models have been piloted to accurately classify individual patients into relevant diagnostic, phenotypic, and prognostic categories. Prediction models have been developed for survival in symptomatic patients and phenoconversion in asymptomatic mutation carriers. A range of novel imaging modalities have been implemented and 7 Tesla MRI platforms are increasingly being used in ALS studies. Non-ALS MND conditions, such as PLS, SBMA, and SMA, are now also being increasingly studied by quantitative neuroimaging approaches. A unifying theme of recent imaging papers is the departure from describing focal brain changes to focusing on dynamic structural and functional connectivity alterations. Progressive cortico-cortical, cortico-basal, cortico-cerebellar, cortico-bulbar, and cortico-spinal disconnection has been consistently demonstrated by recent studies and recognised as the primary driver of clinical decline. These studies have led the reconceptualisation of ALS as a "network" or "circuitry disease".

Deep Learning for Detecting Periapical Bone Rarefaction in Panoramic Radiographs: A Systematic Review and Critical Assessment.

da Silva-Filho JE, da Silva Sousa Z, de-Araújo APC, Fornagero LDS, Machado MP, de Aguiar AWO, Silva CM, de Albuquerque DF, Gurgel-Filho ED

pubmed logopapersMay 12 2025
To evaluate deep learning (DL)-based models for detecting periapical bone rarefaction (PBRs) in panoramic radiographs (PRs), analyzing their feasibility and performance in dental practice. A search was conducted across seven databases and partial grey literature up to November 15, 2024, using Medical Subject Headings and entry terms related to DL, PBRs, and PRs. Studies assessing DL-based models for detecting and classifying PBRs in conventional PRs were included, while those using non-PR imaging or focusing solely on non-PBR lesions were excluded. Two independent reviewers performed screening, data extraction, and quality assessment using the Quality Assessment of Diagnostic Accuracy Studies-2 tool, with conflicts resolved by a third reviewer. Twelve studies met the inclusion criteria, mostly from Asia (58.3%). The risk of bias was moderate in 10 studies (83.3%) and high in 2 (16.7%). DL models showed moderate to high performance in PBR detection (sensitivity: 26-100%; specificity: 51-100%), with U-NET and YOLO being the most used algorithms. Only one study (8.3%) distinguished Periapical Granuloma from Periapical Cysts, revealing a classification gap. Key challenges included limited generalization due to small datasets, anatomical superimpositions in PRs, and variability in reported metrics, compromising models comparison. This review underscores that DL-based has the potential to become a valuable tool in dental image diagnostics, but it cannot yet be considered a definitive practice. Multicenter collaboration is needed to diversify data and democratize those tools. Standardized performance reporting is critical for fair comparability between different models.

Groupwise image registration with edge-based loss for low-SNR cardiac MRI.

Lei X, Schniter P, Chen C, Ahmad R

pubmed logopapersMay 12 2025
The purpose of this study is to perform image registration and averaging of multiple free-breathing single-shot cardiac images, where the individual images may have a low signal-to-noise ratio (SNR). To address low SNR encountered in single-shot imaging, especially at low field strengths, we propose a fast deep learning (DL)-based image registration method, called Averaging Morph with Edge Detection (AiM-ED). AiM-ED jointly registers multiple noisy source images to a noisy target image and utilizes a noise-robust pre-trained edge detector to define the training loss. We validate AiM-ED using synthetic late gadolinium enhanced (LGE) images from the MR extended cardiac-torso (MRXCAT) phantom and free-breathing single-shot LGE images from healthy subjects (24 slices) and patients (5 slices) under various levels of added noise. Additionally, we demonstrate the clinical feasibility of AiM-ED by applying it to data from patients (6 slices) scanned on a 0.55T scanner. Compared with a traditional energy-minimization-based image registration method and DL-based VoxelMorph, images registered using AiM-ED exhibit higher values of recovery SNR and three perceptual image quality metrics. An ablation study shows the benefit of both jointly processing multiple source images and using an edge map in AiM-ED. For single-shot LGE imaging, AiM-ED outperforms existing image registration methods in terms of image quality. With fast inference, minimal training data requirements, and robust performance at various noise levels, AiM-ED has the potential to benefit single-shot CMR applications.

Cardiac imaging for the detection of ischemia: current status and future perspectives.

Rodriguez C, Pappas L, Le Hong Q, Baquero L, Nagel E

pubmed logopapersMay 12 2025
Coronary artery disease is the main cause of mortality worldwide mandating early detection, appropriate treatment, and follow-up. Noninvasive cardiac imaging techniques allow detection of obstructive coronary heart disease by direct visualization of the arteries or myocardial blood flow reduction. These techniques have made remarkable progress since their introduction, achieving high diagnostic precision. This review aims at evaluating these noninvasive cardiac imaging techniques, rendering a thorough overview of diagnostic decision-making for detection of ischemia. We discuss the latest advances in the field such as computed tomography angiography, single-photon emission tomography, positron emission tomography, and cardiac magnetic resonance; their main advantages and disadvantages, their most appropriate use and prospects. For the review, we analyzed the literature from 2009 to 2024 on noninvasive cardiac imaging in the diagnosis of coronary artery disease. The review included the 78 publications considered most relevant, including landmark trials, review articles and guidelines. The progress in cardiac imaging is anticipated to overcome various limitations such as high costs, radiation exposure, artifacts, and differences in interpretation among observers. It is expected to lead to more automated scanning processes, and with the assistance of artificial intelligence-driven post-processing software, higher accuracy and reproducibility may be attained.

Inference-specific learning for improved medical image segmentation.

Chen Y, Liu S, Li M, Han B, Xing L

pubmed logopapersMay 12 2025
Deep learning networks map input data to output predictions by fitting network parameters using training data. However, applying a trained network to new, unseen inference data resembles an interpolation process, which may lead to inaccurate predictions if the training and inference data distributions differ significantly. This study aims to generally improve the prediction accuracy of deep learning networks on the inference case by bridging the gap between training and inference data. We propose an inference-specific learning strategy to enhance the network learning process without modifying the network structure. By aligning training data to closely match the specific inference data, we generate an inference-specific training dataset, enhancing the network optimization around the inference data point for more accurate predictions. Taking medical image auto-segmentation as an example, we develop an inference-specific auto-segmentation framework consisting of initial segmentation learning, inference-specific training data deformation, and inference-specific segmentation refinement. The framework is evaluated on public abdominal, head-neck, and pancreas CT datasets comprising 30, 42, and 210 cases, respectively, for medical image segmentation. Experimental results show that our method improves the organ-averaged mean Dice by 6.2% (p-value = 0.001), 1.5% (p-value = 0.003), and 3.7% (p-value < 0.001) on the three datasets, respectively, with a more notable increase for difficult-to-segment organs (such as a 21.7% increase for the gallbladder [p-value = 0.004]). By incorporating organ mask-based weak supervision into the training data alignment learning, the inference-specific auto-segmentation accuracy is generally improved compared with the image intensity-based alignment. Besides, a moving-averaged calculation of the inference organ mask during the learning process strengthens both the robustness and accuracy of the final inference segmentation. By leveraging inference data during training, the proposed inference-specific learning strategy consistently improves auto-segmentation accuracy and holds the potential to be broadly applied for enhanced deep learning decision-making.

Generation of synthetic CT from MRI for MRI-based attenuation correction of brain PET images using radiomics and machine learning.

Hoseinipourasl A, Hossein-Zadeh GA, Sheikhzadeh P, Arabalibeik H, Alavijeh SK, Zaidi H, Ay MR

pubmed logopapersMay 12 2025
Accurate quantitative PET imaging in neurological studies requires proper attenuation correction. MRI-guided attenuation correction in PET/MRI remains challenging owing to the lack of direct relationship between MRI intensities and linear attenuation coefficients. This study aims at generating accurate patient-specific synthetic CT volumes, attenuation maps, and attenuation correction factor (ACF) sinograms with continuous values utilizing a combination of machine learning algorithms, image processing techniques, and voxel-based radiomics feature extraction approaches. Brain MR images of ten healthy volunteers were acquired using IR-pointwise encoding time reduction with radial acquisition (IR-PETRA) and VIBE-Dixon techniques. synthetic CT (SCT) images, attenuation maps, and attenuation correction factors (ACFs) were generated using the LightGBM, a fast and accurate machine learning algorithm, from the radiomics-based and image processing-based feature maps of MR images. Additionally, ultra-low-dose CT images of the same volunteers were acquired and served as the standard of reference for evaluation. The SCT images, attenuation maps, and ACF sinograms were assessed using qualitative and quantitative evaluation metrics and compared against their corresponding reference images, attenuation maps, and ACF sinograms. The voxel-wise and volume-wise comparison between synthetic and reference CT images yielded an average mean absolute error of 60.75 ± 8.8 HUs, an average structural similarity index of 0.88 ± 0.02, and an average peak signal-to-noise ratio of 32.83 ± 2.74 dB. Additionally, we compared MRI-based attenuation maps and ACF sinograms with their CT-based counterparts, revealing average normalized mean absolute errors of 1.48% and 1.33%, respectively. Quantitative assessments indicated higher correlations and similarities between LightGBM-synthesized CT and Reference CT images. Moreover, the cross-validation results showed the possibility of producing accurate SCT images, MRI-based attenuation maps, and ACF sinograms. This might spur the implementation of MRI-based attenuation correction on PET/MRI and dedicated brain PET scanners with lower computational time using CPU-based processors.

Fully volumetric body composition analysis for prognostic overall survival stratification in melanoma patients.

Borys K, Lodde G, Livingstone E, Weishaupt C, Römer C, Künnemann MD, Helfen A, Zimmer L, Galetzka W, Haubold J, Friedrich CM, Umutlu L, Heindel W, Schadendorf D, Hosch R, Nensa F

pubmed logopapersMay 12 2025
Accurate assessment of expected survival in melanoma patients is crucial for treatment decisions. This study explores deep learning-based body composition analysis to predict overall survival (OS) using baseline Computed Tomography (CT) scans and identify fully volumetric, prognostic body composition features. A deep learning network segmented baseline abdomen and thorax CTs from a cohort of 495 patients. The Sarcopenia Index (SI), Myosteatosis Fat Index (MFI), and Visceral Fat Index (VFI) were derived and statistically assessed for prognosticating OS. External validation was performed with 428 patients. SI was significantly associated with OS on both CT regions: abdomen (P ≤ 0.0001, HR: 0.36) and thorax (P ≤ 0.0001, HR: 0.27), with lower SI associated with prolonged survival. MFI was also associated with OS on abdomen (P ≤ 0.0001, HR: 1.16) and thorax CTs (P ≤ 0.0001, HR: 1.08), where higher MFI was linked to worse outcomes. Lastly, VFI was associated with OS on abdomen CTs (P ≤ 0.001, HR: 1.90), with higher VFI linked to poor outcomes. External validation replicated these results. SI, MFI, and VFI showed substantial potential as prognostic factors for OS in malignant melanoma patients. This approach leveraged existing CT scans without additional procedural or financial burdens, highlighting the seamless integration of DL-based body composition analysis into standard oncologic staging routines.

Identification of HER2-over-expression, HER2-low-expression, and HER2-zero-expression statuses in breast cancer based on <sup>18</sup>F-FDG PET/CT radiomics.

Hou X, Chen K, Luo H, Xu W, Li X

pubmed logopapersMay 12 2025
According to the updated classification system, human epidermal growth factor receptor 2 (HER2) expression statuses are divided into the following three groups: HER2-over-expression, HER2-low-expression, and HER2-zero-expression. HER2-negative expression was reclassified into HER2-low-expression and HER2-zero-expression. This study aimed to identify three different HER2 expression statuses for breast cancer (BC) patients using PET/CT radiomics and clinicopathological characteristics. A total of 315 BC patients who met the inclusion and exclusion criteria from two institutions were retrospectively included. The patients in institution 1 were divided into the training set and the independent validation set according to the ratio of 7:3, and institution 2 was used as the external validation set. According to the results of pathological examination, all BC patients were divided into HER2-over-expression, HER2-low-expression, and HER2-zero-expression. First, PET/CT radiomic features and clinicopathological features based on each patient were extracted and collected. Second, multiple methods were used to perform feature screening and feature selection. Then, four machine learning classifiers, including logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), were constructed to identify HER2-over-expression vs. others, HER2-low-expression vs. others, and HER2-zero-expression vs. others. The receiver operator characteristic (ROC) curve was plotted to measure the model's predictive power. According to the feature screening process, 8, 10, and 2 radiomics features and 2 clinicopathological features were finally selected to construct three prediction models (HER2-over-expression vs. others, HER2-low-expression vs. others, and HER2-zero-expression vs. others). For HER2-over-expression vs. others, the RF model outperformed other models with an AUC value of 0.843 (95%CI: 0.774-0.897), 0.785 (95%CI: 0.665-0.877), and 0.788 (95%CI: 0.708-0.868) in the training set, independent validation set, and external validation set. Concerning HER2-low-expression vs. others, the outperformance of the LR model over other models was identified with an AUC value of 0.783 (95%CI: 0.708-0.846), 0.756 (95%CI: 0.634-0.854), and 0.779 (95%CI: 0.698-0.860) in the training set, independent validation set, and external validation set. Whereas, the KNN model was confirmed as the optimal model to distinguish HER2-zero-expression from others, with an AUC value of 0.929 (95%CI: 0.890-0.958), 0.847 (95%CI: 0.764-0.910), and 0.835 (95%CI: 0.762-0.908) in the training set, independent validation set, and external validation set. Combined PET/CT radiomic models integrating with clinicopathological characteristics are non-invasively predictive of different HER2 statuses of BC patients.

Insights into radiomics: a comprehensive review for beginners.

Mariotti F, Agostini A, Borgheresi A, Marchegiani M, Zannotti A, Giacomelli G, Pierpaoli L, Tola E, Galiffa E, Giovagnoni A

pubmed logopapersMay 12 2025
Radiomics and artificial intelligence (AI) are rapidly evolving, significantly transforming the field of medical imaging. Despite their growing adoption, these technologies remain challenging to approach due to their technical complexity. This review serves as a practical guide for early-career radiologists and researchers seeking to integrate radiomics into their studies. It provides practical insights for clinical and research applications, addressing common challenges, limitations, and future directions in the field. This work offers a structured overview of the essential steps in the radiomics workflow, focusing on concrete aspects of each step, including indicative and practical examples. It covers the main steps such as dataset definition, image acquisition and preprocessing, segmentation, feature extraction and selection, and AI model training and validation. Different methods to be considered are discussed, accompanied by summary diagrams. This review equips readers with the knowledge necessary to approach radiomics and AI in medical imaging from a hands-on research perspective.

Effect of Deep Learning-Based Image Reconstruction on Lesion Conspicuity of Liver Metastases in Pre- and Post-contrast Enhanced Computed Tomography.

Ichikawa Y, Hasegawa D, Domae K, Nagata M, Sakuma H

pubmed logopapersMay 12 2025
The purpose of this study was to investigate the utility of deep learning image reconstruction at medium and high intensity levels (DLIR-M and DLIR-H, respectively) for better delineation of liver metastases in pre-contrast and post-contrast CT, compared to conventional hybrid iterative reconstruction (IR) methods. Forty-one patients with liver metastases who underwent abdominal CT were studied. The raw data were reconstructed with three different algorithms: hybrid IR (ASiR-V 50%), DLIR-M (TrueFildelity-M), and DLIR-H (TrueFildelity-H). Three experienced radiologists independently rated the lesion conspicuity of liver metastases on a qualitative 5-point scale (score 1 = very poor; score 5 = excellent). The observers also selected each image series for pre- and post-contrast CT per patient that was considered most preferable for liver metastases assessment. For pre-contrast CT, lesion conspicuity scores for DLIR-H and DLIR-M were significantly higher than those for hybrid IR for two of the three observers, while there was no significant difference for one observer. For post-contrast CT, the lesion conspicuity scores for DLIR-H images were significantly higher than those for DLIR-M images for two of the three observers on post-contrast CT (Observer 1: DLIR-H, 4.3 ± 0.8 vs. DLIR-M, 3.9 ± 0.9, p = 0.0006; Observer 3: DLIR-H, 4.6 ± 0.6 vs. DLIR-M, 4.3 ± 0.6, p = 0.0013). For post-contrast CT, all observers most often selected DLIR-H as the best reconstruction method for the diagnosis of liver metastases. However, in the pre-contrast CT, there was variation among the three observers in determining the most preferred image reconstruction method, and DLIR was not necessarily preferred over hybrid IR for the diagnosis of liver metastases.
Page 180 of 1981980 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.