Sort by:
Page 17 of 54537 results

Multi-institutional study for comparison of detectability of hypovascular liver metastases between 70- and 40-keV images: DELMIO study.

Ichikawa S, Funayama S, Hyodo T, Ozaki K, Ito A, Kakuya M, Kobayashi T, Tanahashi Y, Kozaka K, Igarashi S, Suto T, Noda Y, Matsuo M, Narita A, Okada H, Suzuki K, Goshima S

pubmed logopapersAug 9 2025
To compare the lesion detectability of hypovascular liver metastases between 70-keV and 40-keV images from dual energy-computed tomography (CT) reconstructed with deep-learning image reconstruction (DLIR). This multi-institutional, retrospective study included adult patients both pre- and post-treatment for gastrointestinal adenocarcinoma. All patients underwent contrast-enhanced CT with reconstruction at 40-keV and 70-keV. Liver metastases were confirmed using gadoxetic acid-enhanced magnetic resonance imaging. Four radiologists independently assessed lesion conspicuity (per-patient and per-lesion) using a 5-point scale. A radiologic technologist measured image noise, tumor-to-liver contrast, and contrast-to-noise ratio (CNR). Quantitative and qualitative results were compared between 70-keV and 40-keV images. The study included 138 patients (mean age, 69 ± 12 years; 80 men) with 208 liver metastases. Seventy-one patients had liver metastases, while 67 did not. Primary cancer sites included 68 cases of pancreas, 50 colorectal, 12 stomach, and 8 gallbladder/bile duct. No significant difference in per-patient lesion detectability was found between 70-keV images (sensitivity, 71.8-90.1%; specificity, 61.2-85.1%; accuracy, 73.9-79.7%) and 40-keV images (sensitivity, 76.1-90.1%; specificity, 53.7-82.1%; accuracy, 71.7-79.0%) (p = 0.18-> 0.99). Similarly, no significant difference in per-lesion lesion detectability was observed between 70-keV (sensitivity, 67.3-82.2%) and 40-keV images (sensitivity, 68.8-81.7%) (p = 0.20-> 0.99). However, Image noise was significantly higher at 40 keV, along with greater tumor-to-liver contrast and CNRs for both hepatic parenchyma and tumors (p < 0.01). There was no significant difference in hypovascular liver metastases detectability between 70-keV and 40-keV images using the DLIR technology.

Reducing motion artifacts in the aorta: super-resolution deep learning reconstruction with motion reduction algorithm.

Yasaka K, Tsujimoto R, Miyo R, Abe O

pubmed logopapersAug 9 2025
To assess the efficacy of super-resolution deep learning reconstruction (SR-DLR) with motion reduction algorithm (SR-DLR-M) in mitigating aorta motion artifacts compared to SR-DLR and deep learning reconstruction with motion reduction algorithm (DLR-M). This retrospective study included 86 patients (mean age, 65.0 ± 14.1 years; 53 males) who underwent contrast-enhanced CT including the chest region. CT images were reconstructed with SR-DLR-M, SR-DLR, and DLR-M. Circular or ovoid regions of interest were placed on the aorta, and the standard deviation of the CT attenuation was recorded as quantitative noise. From the CT attenuation profile along a line region of interest that intersected the left common carotid artery wall, edge rise slope and edge rise distance were calculated. Two readers assessed the images based on artifact, sharpness, noise, structure depiction, and diagnostic acceptability (for aortic dissection). Quantitative noise was 7.4/5.4/8.3 Hounsfield unit (HU) in SR-DLR-M/SR-DLR/DLR-M. Significant differences were observed between SR-DLR-M vs. SR-DLR and DLR-M (p < 0.001). Edge rise slope and edge rise distance were 107.1/108.8/85.8 HU/mm and 1.6/1.5/2.0 mm, respectively, in SR-DLR-M/SR-DLR/DLR-M. Statistically significant differences were detected between SR-DLR-M vs. DLR-M (p ≤ 0.001 for both). Two readers scored artifacts in SR-DLR-M as significantly better than those in SR-DLR (p < 0.001). Scores for sharpness, noise, and structure depiction in SR-DLR-M were significantly better than those in DLR-M (p ≤ 0.005). Diagnostic acceptability in SR-DLR-M was significantly better than that in SR-DLR and DLR-M (p < 0.001). SR-DLR-M provided significantly better CT images in diagnosing aortic dissection compared to SR-DLR and DLR-M.

Fourier Optics and Deep Learning Methods for Fast 3D Reconstruction in Digital Holography

Justin London

arxiv logopreprintAug 8 2025
Computer-generated holography (CGH) is a promising method that modulates user-defined waveforms with digital holograms. An efficient and fast pipeline framework is proposed to synthesize CGH using initial point cloud and MRI data. This input data is reconstructed into volumetric objects that are then input into non-convex Fourier optics optimization algorithms for phase-only hologram (POH) and complex-hologram (CH) generation using alternating projection, SGD, and quasi-Netwton methods. Comparison of reconstruction performance of these algorithms as measured by MSE, RMSE, and PSNR is analyzed as well as to HoloNet deep learning CGH. Performance metrics are shown to be improved by using 2D median filtering to remove artifacts and speckled noise during optimization.

Variational volume reconstruction with the Deep Ritz Method

Conor Rowan, Sumedh Soman, John A. Evans

arxiv logopreprintAug 8 2025
We present a novel approach to variational volume reconstruction from sparse, noisy slice data using the Deep Ritz method. Motivated by biomedical imaging applications such as MRI-based slice-to-volume reconstruction (SVR), our approach addresses three key challenges: (i) the reliance on image segmentation to extract boundaries from noisy grayscale slice images, (ii) the need to reconstruct volumes from a limited number of slice planes, and (iii) the computational expense of traditional mesh-based methods. We formulate a variational objective that combines a regression loss designed to avoid image segmentation by operating on noisy slice data directly with a modified Cahn-Hilliard energy incorporating anisotropic diffusion to regularize the reconstructed geometry. We discretize the phase field with a neural network, approximate the objective at each optimization step with Monte Carlo integration, and use ADAM to find the minimum of the approximated variational objective. While the stochastic integration may not yield the true solution to the variational problem, we demonstrate that our method reliably produces high-quality reconstructed volumes in a matter of seconds, even when the slice data is sparse and noisy.

An Anisotropic Cross-View Texture Transfer with Multi-Reference Non-Local Attention for CT Slice Interpolation.

Uhm KH, Cho H, Hong SH, Jung SW

pubmed logopapersAug 8 2025
Computed tomography (CT) is one of the most widely used non-invasive imaging modalities for medical diagnosis. In clinical practice, CT images are usually acquired with large slice thicknesses due to the high cost of memory storage and operation time, resulting in an anisotropic CT volume with much lower inter-slice resolution than in-plane resolution. Since such inconsistent resolution may lead to difficulties in disease diagnosis, deep learning-based volumetric super-resolution methods have been developed to improve inter-slice resolution. Most existing methods conduct single-image super-resolution on the through-plane or synthesize intermediate slices from adjacent slices; however, the anisotropic characteristic of 3D CT volume has not been well explored. In this paper, we propose a novel cross-view texture transfer approach for CT slice interpolation by fully utilizing the anisotropic nature of 3D CT volume. Specifically, we design a unique framework that takes high-resolution in-plane texture details as a reference and transfers them to low-resolution through-plane images. To this end, we introduce a multi-reference non-local attention module that extracts meaningful features for reconstructing through-plane high-frequency details from multiple in-plane images. Through extensive experiments, we demonstrate that our method performs significantly better in CT slice interpolation than existing competing methods on public CT datasets including a real-paired benchmark, verifying the effectiveness of the proposed framework. The source code of this work is available at https://github.com/khuhm/ACVTT.

Multivariate Fields of Experts

Stanislas Ducotterd, Michael Unser

arxiv logopreprintAug 8 2025
We introduce the multivariate fields of experts, a new framework for the learning of image priors. Our model generalizes existing fields of experts methods by incorporating multivariate potential functions constructed via Moreau envelopes of the $\ell_\infty$-norm. We demonstrate the effectiveness of our proposal across a range of inverse problems that include image denoising, deblurring, compressed-sensing magnetic-resonance imaging, and computed tomography. The proposed approach outperforms comparable univariate models and achieves performance close to that of deep-learning-based regularizers while being significantly faster, requiring fewer parameters, and being trained on substantially fewer data. In addition, our model retains a relatively high level of interpretability due to its structured design.

Subject-specific acceleration of simultaneous quantification of blood flow and T<sub>1</sub> of the brain using a dual-flip-angle phase-contrast stack-of-stars sequence.

Wang Y, Wang M, Liu B, Ding Z, She H, Du YP

pubmed logopapersAug 8 2025
To develop a highly accelerated MRI technique for simultaneous quantification of blood flow and T<sub>1</sub> of the brain tissue. A dual-flip-angle phase-contrast stack-of-stars (DFA PC-SOS) sequence was developed for simultaneous acquisition of highly-undersampled data for the quantification of velocity of arterial blood and T<sub>1</sub> mapping of brain tissue. A deep learning-based algorithm, combining hybrid-feature hash encoding implicit neural representation with explicit sparse prior knowledge (INRESP), was used for image reconstruction. Magnitude and phase images were used for T<sub>1</sub> mapping and velocity measurements, respectively. The accuracy of the measurements was assessed in a quantitative phantom and six healthy volunteers. T<sub>1</sub> mapping obtained with DFA PC-SOS showed high correlation and consistency with reference measurements in phantom experiments (y = 0.916× + 4.71, R<sup>2</sup> = 0.9953, ICC = 0.9963). Blood flow measurements in healthy volunteers demonstrated strong correlation and consistency with reference values measured by SFA PC-SOS (y = 1.04×-0.187, R<sup>2</sup> = 0.9918, ICC = 0.9967). The proposed technique enabled an acceleration of 16× with high correlation and consistency with fully sampled data in volunteers (T<sub>1</sub>: y = 1.06× + 1.44, R<sup>2</sup> = 0.9815, ICC = 0.9818; flow: y = 1.01×-0.0525, R<sup>2</sup> = 0.9995, ICC = 0.9998). This study demonstrates the feasibility of 16-fold accelerated simultaneous acquisition for flow quantification and T<sub>1</sub> mapping in the brain. The proposed technique provides a rapid and comprehensive assessment of cerebrovascular diseases with both vascular hemodynamics and surrounding brain tissue characteristics, and has potential to be used in routine clinical applications.

SamRobNODDI: q-space sampling-augmented continuous representation learning for robust and generalized NODDI.

Xiao T, Cheng J, Fan W, Dong E, Wang S

pubmed logopapersAug 8 2025
Neurite Orientation Dispersion and Density Imaging (NODDI) microstructure estimation from diffusion magnetic resonance imaging (dMRI) is of great significance for the discovery and treatment of various neurological diseases. Current deep learning-based methods accelerate the speed of NODDI parameter estimation and improve the accuracy. However, most methods require the number and coordinates of gradient directions during testing and training to remain strictly consistent, significantly limiting the generalization and robustness of these models in NODDI parameter estimation. Therefore, it is imperative to develop methods that can perform robustly under varying diffusion gradient directions. In this paper, we propose a q-space sampling augmentation-based continuous representation learning framework (SamRobNODDI) to achieve robust and generalized NODDI. Specifically, a continuous representation learning method based on q-space sampling augmentation is introduced to fully explore the information between different gradient directions in q- space. Furthermore, we design a sampling consistency loss to constrain the outputs of different sampling schemes, ensuring that the outputs remain as consistent as possible, thereby further enhancing performance and robustness to varying q-space sampling schemes. SamRobNODDI is also a flexible framework that can be applied to different backbone networks. SamRobNODDI was compared against seven state-of-the-art methods across 18 diverse q-space sampling schemes. Extensive experimental validations have been conducted under both identical and diverse sampling schemes for training and testing, as well as across varying sampling rates, different loss functions, and multiple network backbones. Results demonstrate that the proposed SamRobNODDI has better performance, robustness, generalization, and flexibility in the face of varying q-space sampling schemes.&#xD.

A novel approach for CT image smoothing: Quaternion Bilateral Filtering for kernel conversion.

Nasr M, Piórkowski A, Brzostowski K, El-Samie FEA

pubmed logopapersAug 7 2025
Denoising reconstructed Computed Tomography (CT) images without access to raw projection data remains a significant difficulty in medical imaging, particularly when utilizing sharp or medium reconstruction kernels that generate high-frequency noise. This work introduces an innovative method that integrates quaternion mathematics with bilateral filtering to resolve this issue. The proposed Quaternion Bilateral Filter (QBF) effectively maintains anatomical structures and mitigates noise caused by the kernel by expressing CT scans in quaternion form, with the red, green, and blue channels encoded together. Compared to conventional methods that depend on raw data or grayscale filtering, our approach functions directly on reconstructed sharp kernel images. It converts them to mimic the quality of soft-kernel outputs, obtained with kernels such as B30f, using paired data from the same patients. The efficacy of the QBF is evidenced by both full-reference metrics (Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE)) and no-reference perceptual metrics (Naturalness Image Quality Evaluator (NIQE), Blind Referenceless Image Spatial Quality Evaluator (BRISQUE), and Perception-based Image Quality Evaluator (PIQE)). The results indicate that the QBF demonstrates improved denoising efficacy compared to traditional Bilateral Filter (BF), Non-Local Means (NLM), wavelet, and Convolutional Neural Network (CNN)-based processing, achieving an SSIM of 0.96 and a PSNR of 36.3 on B50f reconstructions. Additionally, segmentation-based visual validation verifies that QBF-filtered outputs maintain essential structural details necessary for subsequent diagnostic tasks. This study emphasizes the importance of quaternion-based filtering as a lightweight, interpretable, and efficient substitute for deep learning models in post-reconstruction CT image enhancement.

Unsupervised learning for inverse problems in computed tomography

Laura Hellwege, Johann Christopher Engster, Moritz Schaar, Thorsten M. Buzug, Maik Stille

arxiv logopreprintAug 7 2025
This study presents an unsupervised deep learning approach for computed tomography (CT) image reconstruction, leveraging the inherent similarities between deep neural network training and conventional iterative reconstruction methods. By incorporating forward and backward projection layers within the deep learning framework, we demonstrate the feasibility of reconstructing images from projection data without relying on ground-truth images. Our method is evaluated on the two-dimensional 2DeteCT dataset, showcasing superior performance in terms of mean squared error (MSE) and structural similarity index (SSIM) compared to traditional filtered backprojection (FBP) and maximum likelihood (ML) reconstruction techniques. Additionally, our approach significantly reduces reconstruction time, making it a promising alternative for real-time medical imaging applications. Future work will focus on extending this methodology to three-dimensional reconstructions and enhancing the adaptability of the projection geometry.
Page 17 of 54537 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.