Sort by:
Page 139 of 1391387 results

Same-model and cross-model variability in knee cartilage thickness measurements using 3D MRI systems.

Katano H, Kaneko H, Sasaki E, Hashiguchi N, Nagai K, Ishijima M, Ishibashi Y, Adachi N, Kuroda R, Tomita M, Masumoto J, Sekiya I

pubmed logopapersJan 1 2025
Magnetic Resonance Imaging (MRI) based three-dimensional analysis of knee cartilage has evolved to become fully automatic. However, when implementing these measurements across multiple clinical centers, scanner variability becomes a critical consideration. Our purposes were to quantify and compare same-model variability (between repeated scans on the same MRI system) and cross-model variability (across different MRI systems) in knee cartilage thickness measurements using MRI scanners from five manufacturers, as analyzed with a specific 3D volume analysis software. Ten healthy volunteers (eight males and two females, aged 22-60 years) underwent two scans of their right knee on 3T MRI systems from five manufacturers (Canon, Fujifilm, GE, Philips, and Siemens). The imaging protocol included fat-suppressed spoiled gradient echo and proton density weighted sequences. Cartilage regions were automatically segmented into 7 subregions using a specific deep learning-based 3D volume analysis software. This resulted in 350 measurements for same-model variability and 2,800 measurements for cross-model variability. For same-model variability, 82% of measurements showed variability ≤0.10 mm, and 98% showed variability ≤0.20 mm. For cross-model variability, 51% showed variability ≤0.10 mm, and 84% showed variability ≤0.20 mm. The mean same-model variability (0.06 ± 0.05 mm) was significantly lower than cross-model variability (0.11 ± 0.09 mm) (p < 0.001). This study demonstrates that knee cartilage thickness measurements exhibit significantly higher variability across different MRI systems compared to repeated measurements on the same system, when analyzed using this specific software. This finding has important implications for multi-center studies and longitudinal assessments using different MRI systems and highlights the software-dependent nature of such variability assessments.

RRFNet: A free-anchor brain tumor detection and classification network based on reparameterization technology.

Liu W, Guo X

pubmed logopapersJan 1 2025
Advancements in medical imaging technology have facilitated the acquisition of high-quality brain images through computed tomography (CT) or magnetic resonance imaging (MRI), enabling professional brain specialists to diagnose brain tumors more effectively. However, manual diagnosis is time-consuming, which has led to the growing importance of automatic detection and classification through brain imaging. Conventional object detection models for brain tumor detection face limitations in brain tumor detection owing to the significant differences between medical images and natural scene images, as well as challenges such as complex backgrounds, noise interference, and blurred boundaries between cancerous and normal tissues. This study investigates the application of deep learning to brain tumor detection, analyzing the effect of three factors, the number of model parameters, input data batch size, and the use of anchor boxes, on detection performance. Experimental results reveal that an excessive number of model parameters or the use of anchor boxes may reduce detection accuracy. However, increasing the number of brain tumor samples improves detection performance. This study, introduces a backbone network built using RepConv and RepC3, along with FGConcat feature map splicing module to optimize the brain tumor detection model. The experimental results show that the proposed RepConv-RepC3-FGConcat Network (RRFNet) can learn underlying semantic information about brain tumors during training stage, while maintaining a low number of parameters during inference, which improves the speed of brain tumor detection. Compared with YOLOv8, RRFNet achieved a higher accuracy in brain tumor detection, with a mAP value of 79.2%. This optimized approach enhances both accuracy and efficiency, which is essential in clinical settings where time and precision are critical.

Patients', clinicians' and developers' perspectives and experiences of artificial intelligence in cardiac healthcare: A qualitative study.

Baillie L, Stewart-Lord A, Thomas N, Frings D

pubmed logopapersJan 1 2025
This study investigated perspectives and experiences of artificial intelligence (AI) developers, clinicians and patients about the use of AI-based software in cardiac healthcare. A qualitative study took place at two hospitals in England that had trialled AI-based software use in stress echocardiography, a scan that uses ultrasound to assess heart function. Semi-structured interviews were conducted with: patients (<i>n = </i>9), clinicians (<i>n = </i>16) and AI software developers (<i>n = </i>5). Data were analysed using thematic analysis. Potential benefits identified were increasing consistency and reliability through reducing human error, and greater efficiency. Concerns included over-reliance on the AI technology, and data security. Participants discussed the need for human input and empathy within healthcare, transparency about AI use, and issues around trusting AI. Participants considered AI's role as assisting diagnosis but not replacing clinician involvement. Clinicians and patients emphasised holistic diagnosis that involves more than the scan. Clinicians considered their diagnostic ability as superior and discrepancies were managed in line with clinicians' diagnoses rather than AI reports. The practicalities of using the AI software concerned image acquisition to meet AI processing requirements and workflow integration. There was positivity towards AI use, but the AI software was considered an adjunct to clinicians rather than replacing their input. Clinicians' experiences were that their diagnostic ability remained superior to the AI, and acquiring images acceptable to AI was sometimes problematic. Despite hopes for increased efficiency through AI use, clinicians struggled to identify fit with clinical workflow to bring benefit.

Enhancing Attention Network Spatiotemporal Dynamics for Motor Rehabilitation in Parkinson's Disease.

Pei G, Hu M, Ouyang J, Jin Z, Wang K, Meng D, Wang Y, Chen K, Wang L, Cao LZ, Funahashi S, Yan T, Fang B

pubmed logopapersJan 1 2025
Optimizing resource allocation for Parkinson's disease (PD) motor rehabilitation necessitates identifying biomarkers of responsiveness and dynamic neuroplasticity signatures underlying efficacy. A cohort study of 52 early-stage PD patients undergoing 2-week multidisciplinary intensive rehabilitation therapy (MIRT) was conducted, which stratified participants into responders and nonresponders. A multimodal analysis of resting-state electroencephalography (EEG) microstates and functional magnetic resonance imaging (fMRI) coactivation patterns was performed to characterize MIRT-induced spatiotemporal network reorganization. Responders demonstrated clinically meaningful improvement in motor symptoms, exceeding the minimal clinically important difference threshold of 3.25 on the Unified PD Rating Scale part III, alongside significant reductions in bradykinesia and a significant enhancement in quality-of-life scores at the 3-month follow-up. Resting-state EEG in responders showed a significant attenuation in microstate C and a significant enhancement in microstate D occurrences, along with significantly increased transitions from microstate A/B to D, which significantly correlated with motor function, especially in bradykinesia gains. Concurrently, fMRI analyses identified a prolonged dwell time of the dorsal attention network coactivation/ventral attention network deactivation pattern, which was significantly inversely associated with microstate C occurrence and significantly linked to motor improvement. The identified brain spatiotemporal neural markers were validated using machine learning models to assess the efficacy of MIRT in motor rehabilitation for PD patients, achieving an average accuracy rate of 86%. These findings suggest that MIRT may facilitate a shift in neural networks from sensory processing to higher-order cognitive control, with the dynamic reallocation of attentional resources. This preliminary study validates the necessity of integrating cognitive-motor strategies for the motor rehabilitation of PD and identifies novel neural markers for assessing treatment efficacy.

Enhancement of Fairness in AI for Chest X-ray Classification.

Jackson NJ, Yan C, Malin BA

pubmed logopapersJan 1 2024
The use of artificial intelligence (AI) in medicine has shown promise to improve the quality of healthcare decisions. However, AI can be biased in a manner that produces unfair predictions for certain demographic subgroups. In MIMIC-CXR, a publicly available dataset of over 300,000 chest X-ray images, diagnostic AI has been shown to have a higher false negative rate for racial minorities. We evaluated the capacity of synthetic data augmentation, oversampling, and demographic-based corrections to enhance the fairness of AI predictions. We show that adjusting unfair predictions for demographic attributes, such as race, is ineffective at improving fairness or predictive performance. However, using oversampling and synthetic data augmentation to modify disease prevalence reduced such disparities by 74.7% and 10.6%, respectively. Moreover, such fairness gains were accomplished without reduction in performance (95% CI AUC: [0.816, 0.820] versus [0.810, 0.819] versus [0.817, 0.821] for baseline, oversampling, and augmentation, respectively).

Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.

Tong B, Edwards T, Yang S, Hou B, Tarzanagh DA, Urbanowicz RJ, Moore JH, Ritchie MD, Davatzikos C, Shen L

pubmed logopapersJan 1 2024
Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.

Integrating AI into Clinical Workflows: A Simulation Study on Implementing AI-aided Same-day Diagnostic Testing Following an Abnormal Screening Mammogram.

Lin Y, Hoyt AC, Manuel VG, Inkelas M, Maehara CK, Ayvaci MUS, Ahsen ME, Hsu W

pubmed logopapersJan 1 2024
Artificial intelligence (AI) shows promise in clinical tasks, yet its integration into workflows remains underexplored. This study proposes an AI-aided same-day diagnostic imaging workup to reduce recall rates following abnormal screening mammograms and alleviate patient anxiety while waiting for the diagnostic examinations. Using discrete simulation, we found minimal disruption to the workflow (a 4% reduction in daily patient volume or a 2% increase in operating time) under specific conditions: operation from 9 am to 12 pm with all radiologists managing all patient types (screenings, diagnostics, and biopsies). Costs specific to the AI-aided same-day diagnostic workup include AI software expenses and potential losses from unused pre-reserved slots for same-day diagnostic workups. These simulation findings can inform the implementation of an AI-aided same-day diagnostic workup, with future research focusing on its potential benefits, including improved patient satisfaction, reduced anxiety, lower recall rates, and shorter time to cancer diagnoses and treatment.
Page 139 of 1391387 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.