Sort by:
Page 100 of 3163151 results

Population-scale cross-sectional observational study for AI-powered TB screening on one million CXRs.

Munjal P, Mahrooqi AA, Rajan R, Jeremijenko A, Ahmad I, Akhtar MI, Pimentel MAF, Khan S

pubmed logopapersJul 9 2025
Traditional tuberculosis (TB) screening involves radiologists manually reviewing chest X-rays (CXR), which is time-consuming, error-prone, and limited by workforce shortages. Our AI model, AIRIS-TB (AI Radiology In Screening TB), aims to address these challenges by automating the reporting of all X-rays without any findings. AIRIS-TB was evaluated on over one million CXRs, achieving an AUC of 98.51% and overall false negative rate (FNR) of 1.57%, outperforming radiologists (1.85%) while maintaining a 0% TB-FNR. By selectively deferring only cases with findings to radiologists, the model has the potential to automate up to 80% of routine CXR reporting. Subgroup analysis revealed insignificant performance disparities across age, sex, HIV status, and region of origin, with sputum tests for suspected TB showing a strong correlation with model predictions. This large-scale validation demonstrates AIRIS-TB's safety and efficiency in high-volume TB screening programs, reducing radiologist workload without compromising diagnostic accuracy.

Development of a deep learning-based MRI diagnostic model for human Brucella spondylitis.

Wang B, Wei J, Wang Z, Niu P, Yang L, Hu Y, Shao D, Zhao W

pubmed logopapersJul 9 2025
Brucella spondylitis (BS) and tuberculous spondylitis (TS) are prevalent spinal infections with distinct treatment protocols. Rapid and accurate differentiation between these two conditions is crucial for effective clinical management; however, current imaging and pathogen-based diagnostic methods fall short of fully meeting clinical requirements. This study explores the feasibility of employing deep learning (DL) models based on conventional magnetic resonance imaging (MRI) to differentiate BS and TS. A total of 310 subjects were enrolled in our hospital, comprising 209 with BS, 101 with TS. The participants were randomly divided into a training set (n = 217) and a test set (n = 93). And 74 with other hospital was external validation set. Integrating Convolutional Block Attention Module (CBAM) into the ResNeXt-50 architecture and training the model using sagittal T2-weighted images (T2WI). Classification performance was evaluated using the area under the receiver operating characteristic (AUC) curve, and diagnostic accuracy was compared against general models such as ResNet50, GoogleNet, EfficientNetV2, and VGG16. The CBAM-ResNeXt model revealed superior performance, with accuracy, precision, recall, F1-score, and AUC from 0.942, 0.940, 0.928, 0.934, 0.953, respectively. These metrics outperformed those of the general models. The proposed model offers promising potential for the diagnosis of BS and TS using conventional MRI. It could serve as an invaluable tool in clinical practice, providing a reliable reference for distinguishing between these two diseases.

Feasibility study of "double-low" scanning protocol combined with artificial intelligence iterative reconstruction algorithm for abdominal computed tomography enhancement in patients with obesity.

Ji MT, Wang RR, Wang Q, Li HS, Zhao YX

pubmed logopapersJul 9 2025
To evaluate the efficacy of the "double-low" scanning protocol combined with the artificial intelligence iterative reconstruction (AIIR) algorithm for abdominal computed tomography (CT) enhancement in obese patients and to identify the optimal AIIR algorithm level. Patients with a body mass index ≥ 30.00 kg/m<sup>2</sup> who underwent abdominal CT enhancement were randomly assigned to groups A or B. Group A underwent conventional protocol with the Karl 3D iterative reconstruction algorithm at levels 3-5. Group B underwent the "double-low" protocol with AIIR algorithm at levels 1-5. Radiation dose, total iodine intake, along with subjective and objective image quality were recorded. The optimal reconstruction levels for arterial-phase and portal-venous-phase images were identified. Comparisons were made in terms of radiation dose, iodine intake, and image quality. Overall, 150 patients with obesity were collected, and each group consisted of 75 cases. Karl 3D level 5 was the optimal algorithm level for group A, while AIIR level 4 was the optimal algorithm level for group B. AIIR level 4 images in group B exhibited significantly superior subjective and objective image quality than those in Karl 3D level 5 images in group A (P < 0.001). Group B showed reductions in mean CT dose index values, dose-length product, size-specific dose estimate based on water-equivalent diameter, and total iodine intake, compared with group A (P < 0.001). The "double-low" scanning protocol combined with the AIIR algorithm significantly reduces radiation dose and iodine intake during abdominal CT enhancement in obese patients. AIIR level 4 is the optimal reconstruction level for arterial-phase and portal-venous-phase in this patient population.

A machine learning model reveals invisible microscopic variation in acute ischaemic stroke (≤ 6 h) with non-contrast computed tomography.

Tan J, Xiao M, Wang Z, Wu S, Han K, Wang H, Huang Y

pubmed logopapersJul 9 2025
In most medical centers, particularly in primary hospitals, non-contrast computed tomography (NCCT) serves as the primary imaging modality for diagnosing acute ischemic stroke. However, due to the small density difference between the infarct and the surrounding normal brain tissue on NCCT images within the initial 6 h post-onset, it poses significant challenges in promptly and accurately positioning and quantifying the infarct at the early stage. To investigate whether a radiomics-based model using NCCT could effectively assess the risk of acute ischemic stroke (AIS). This study proposed a machine learning (ML) for infarct detection, enabling automated quantitative assessment of AIS lesions on NCCT images. In this retrospective study, NCCT images from 228 patients with AIS (< 6 h from onset) were included, and paired with MRI-diffusion-weighted imaging (DWI) images (attained within 1 to 7 days of onset). NCCT and DWI images were co-registered using the Elastix toolbox. The internal dataset (153 AIS patients) included 179 AIS VOIs and 153 non-AIS VOIs as the training and validation groups. Subsequent cases (75 patients) after 2021 served as the independent test set, comprising 94 AIS VOIs and 75 non-AIS VOIs. The random forest (RF) model demonstrated robust diagnostic performance across the training, validation, and independent test sets. The areas under the receiver operating characteristic (ROC) curves were 0.858 (95% CI: 0.808-0.908), 0.829 (95% CI: 0.748-0.910), and 0.789 (95% CI: 0.717-0.860), respectively. Accuracies were 79.399%, 77.778%, and 73.965%, while sensitivities were 81.679%, 77.083%, and 68.085%. Specificities were 76.471%, 78.431%, and 81.333%, respectively. NCCT-based radiomics combined with a machine learning model could discriminate between AIS and non-AIS patients within less than 6 h of onset. This approach holds promise for improving early stroke diagnosis and patient outcomes. Not applicable.

Applying deep learning techniques to identify tonsilloliths in panoramic radiography.

Katı E, Baybars SC, Danacı Ç, Tuncer SA

pubmed logopapersJul 9 2025
Tonsilloliths can be seen on panoramic radiographs (PRs) as deposits located on the middle portion of the ramus of the mandible. Although tonsilloliths are clinically harmless, the high risk of misdiagnosis leads to unnecessary advanced examinations and interventions, thus jeopardizing patient safety and increasing unnecessary resource use in the healthcare system. Therefore, this study aims to meet an important clinical need by providing accurate and rapid diagnostic support. The dataset consisted of a total of 275 PRs, with 125 PRs lacking tonsillolith and 150 PRs having tonsillolith. ResNet and EfficientNet CNN models were assessed during the model selection process. An evaluation was conducted to analyze the learning capacity, intricacy, and compatibility of each model with the problem at hand. The effectiveness of the models was evaluated using accuracy, recall, precision, and F1 score measures following the training phase. Both the ResNet18 and EfficientNetB0 models were able to differentiate between tonsillolith-present and tonsillolith-absent conditions with an average accuracy of 89%. ResNet101 demonstrated underperformance when contrasted with other models. EfficientNetB1 exhibits satisfactory accuracy in both categories. The EfficientNetB0 model exhibits a 93% precision, 87% recall, 90% F1 score, and 89% accuracy. This study indicates that implementing AI-powered deep learning techniques would significantly improve the clinical diagnosis of tonsilloliths.

Enhancing automated detection and classification of dementia in individuals with cognitive impairment using artificial intelligence techniques.

Alotaibi SD, Alharbi AAK

pubmed logopapersJul 9 2025
Dementia is a degenerative and chronic disorder, increasingly prevalent among older adults, posing significant challenges in providing appropriate care. As the number of dementia cases continues to rise, delivering optimal care becomes more complex. Machine learning (ML) plays a crucial role in addressing this challenge by utilizing medical data to enhance care planning and management for individuals at risk of various types of dementia. Magnetic resonance imaging (MRI) is a commonly used method for analyzing neurological disorders. Recent evidence highlights the benefits of integrating artificial intelligence (AI) techniques with MRI, significantly enhancing the diagnostic accuracy for different forms of dementia. This paper explores the use of AI in the automated detection and classification of dementia, aiming to streamline early diagnosis and improve patient outcomes. Integrating ML models into clinical practice can transform dementia care by enabling early detection, personalized treatment plans, and more effectual monitoring of disease progression. In this study, an Enhancing Automated Detection and Classification of Dementia in Thinking Inability Persons using Artificial Intelligence Techniques (EADCD-TIPAIT) technique is presented. The goal of the EADCD-TIPAIT technique is for the detection and classification of dementia in individuals with cognitive impairment using MRI imaging. The EADCD-TIPAIT method performs preprocessing to scale the input data using z-score normalization to obtain this. Next, the EADCD-TIPAIT technique performs a binary greylag goose optimization (BGGO)-based feature selection approach to efficiently identify relevant features that distinguish between normal and dementia-affected brain regions. In addition, the wavelet neural network (WNN) classifier is employed to detect and classify dementia. Finally, the improved salp swarm algorithm (ISSA) is implemented to choose the WNN technique's hyperparameters optimally. The stimulation of the EADCD-TIPAIT technique is examined under a Dementia prediction dataset. The performance validation of the EADCD-TIPAIT approach portrayed a superior accuracy value of 95.00% under diverse measures.

MMDental - A multimodal dataset of tooth CBCT images with expert medical records.

Wang C, Zhang Y, Wu C, Liu J, Wu L, Wang Y, Huang X, Feng X, Wang Y

pubmed logopapersJul 9 2025
In the rapidly evolving field of dental intelligent healthcare, where Artificial Intelligence (AI) plays a pivotal role, the demand for multimodal datasets is critical. Existing public datasets are primarily composed of single-modal data, predominantly dental radiographs or scans, which limits the development of AI-driven applications for intelligent dental treatment. In this paper, we collect a MultiModal Dental (MMDental) dataset to address this gap. MMDental comprises data from 660 patients, including 3D Cone-beam Computed Tomography (CBCT) images and corresponding detailed expert medical records with initial diagnoses and follow-up documentation. All CBCT scans are conducted under the guidance of professional physicians, and all patient records are reviewed by senior doctors. To the best of our knowledge, this is the first and largest dataset containing 3D CBCT images of teeth with corresponding medical records. Furthermore, we provide a comprehensive analysis of the dataset by exploring patient demographics, prevalence of various dental conditions, and the disease distribution across age groups. We believe this work will be beneficial for further advancements in dental intelligent treatment.

Deep learning-based automatic detection and grading of disk herniation in lumbar magnetic resonance images.

Guo Y, Huang X, Chen W, Nakamoto I, Zhuang W, Chen H, Feng J, Wu J

pubmed logopapersJul 9 2025
Magnetic resonance imaging of the lumbar spine is a key technique for clarifying the cause of disease. The greatest challenges today are the repetitive and time-consuming process of interpreting these complex MR images and the problem of unequal diagnostic results from physicians with different levels of experience. To address these issues, in this study, an improved YOLOv8 model (GE-YOLOv8) that combines a gradient search module and efficient channel attention was developed. To address the difficulty of intervertebral disc feature extraction, the GS module was introduced into the backbone network, which enhances the feature learning ability for the key structures through the gradient splitting strategy, and the number of parameters was reduced by 2.1%. The ECA module optimizes the weights of the feature channels and enhances the sensitivity of detection for small-target lesions, and the mAP50 was improved by 4.4% compared with that of YOLOv8. GE-YOLOv8 demonstrated the significance of this innovation on the basis of a P value <.001, with YOLOv8 as the baseline. The experimental results on a dataset from the Pingtan Branch of Union Hospital of Fujian Medical University and an external test dataset show that the model has excellent accuracy.

Applicability and performance of convolutional neural networks for the identification of periodontal bone loss in periapical radiographs: a scoping review.

Putra RH, Astuti ER, Nurrachman AS, Savitri Y, Vadya AV, Khairunisa ST, Iikubo M

pubmed logopapersJul 9 2025
The study aimed to review the applicability and performance of various Convolutional Neural Network (CNN) models for the identification of periodontal bone loss (PBL) in digital periapical radiographs achieved through classification, detection, and segmentation approaches. We searched the PubMed, IEEE Xplore, and SCOPUS databases for articles published up to June 2024. After the selection process, a total of 11 studies were included in this review. The reviewed studies demonstrated that CNNs have a significant potential application for automatic identification of PBL on periapical radiographs through classification and segmentation approaches. CNN architectures can be utilized to classify the presence or absence of PBL, the severity or degree of PBL, and PBL area segmentation. CNN showed a promising performance for PBL identification on periapical radiographs. Future research should focus on dataset preparation, proper selection of CNN architecture, and robust performance evaluation to improve the model. Utilizing an optimized CNN architecture is expected to assist dentists by providing accurate and efficient identification of PBL.

Securing Healthcare Data Integrity: Deepfake Detection Using Autonomous AI Approaches.

Hsu CC, Tsai MY, Yu CM

pubmed logopapersJul 9 2025
The rapid evolution of deepfake technology poses critical challenges to healthcare systems, particularly in safeguarding the integrity of medical imaging, electronic health records (EHR), and telemedicine platforms. As autonomous AI becomes increasingly integrated into smart healthcare, the potential misuse of deepfakes to manipulate sensitive healthcare data or impersonate medical professionals highlights the urgent need for robust and adaptive detection mechanisms. In this work, we propose DProm, a dynamic deepfake detection framework leveraging visual prompt tuning (VPT) with a pre-trained Swin Transformer. Unlike traditional static detection models, which struggle to adapt to rapidly evolving deepfake techniques, DProm fine-tunes a small set of visual prompts to efficiently adapt to new data distributions with minimal computational and storage requirements. Comprehensive experiments demonstrate that DProm achieves state-of-the-art performance in both static cross-dataset evaluations and dynamic scenarios, ensuring robust detection across diverse data distributions. By addressing the challenges of scalability, adaptability, and resource efficiency, DProm offers a transformative solution for enhancing the security and trustworthiness of autonomous AI systems in healthcare, paving the way for safer and more reliable smart healthcare applications.
Page 100 of 3163151 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.