Sort by:
Page 1 of 14131 results
Next

Aphasia severity prediction using a multi-modal machine learning approach.

Hu X, Varkanitsa M, Kropp E, Betke M, Ishwar P, Kiran S

pubmed logopapersAug 15 2025
The present study examined an integrated multiple neuroimaging modality (T1 structural, Diffusion Tensor Imaging (DTI), and resting-state FMRI (rsFMRI)) to predict aphasia severity using Western Aphasia Battery-Revised Aphasia Quotient (WAB-R AQ) in 76 individuals with post-stroke aphasia. We employed Support Vector Regression (SVR) and Random Forest (RF) models with supervised feature selection and a stacked feature prediction approach. The SVR model outperformed RF, achieving an average root mean square error (RMSE) of 16.38±5.57, Pearson's correlation coefficient (r) of 0.70±0.13, and mean absolute error (MAE) of 12.67±3.27, compared to RF's RMSE of 18.41±4.34, r of 0.66±0.15, and MAE of 14.64±3.04. Resting-state neural activity and structural integrity emerged as crucial predictors of aphasia severity, appearing in the top 20% of predictor combinations for both SVR and RF. Finally, the feature selection method revealed that functional connectivity in both hemispheres and between homologous language areas is critical for predicting language outcomes in patients with aphasia. The statistically significant difference in performance between the model using only single modality and the optimal multi-modal SVR/RF model (which included both resting-state connectivity and structural information) underscores that aphasia severity is influenced by factors beyond lesion location and volume. These findings suggest that integrating multiple neuroimaging modalities enhances the prediction of language outcomes in aphasia beyond lesion characteristics alone, offering insights that could inform personalized rehabilitation strategies.

AI-based prediction of best-corrected visual acuity in patients with multiple retinal diseases using multimodal medical imaging.

Dong L, Gao W, Niu L, Deng Z, Gong Z, Li HY, Fang LJ, Shao L, Zhang RH, Zhou WD, Ma L, Wei WB

pubmed logopapersAug 14 2025
This study evaluated the performance of artificial intelligence (AI) algorithms in predicting best-corrected visual acuity (BCVA) for patients with multiple retinal diseases, using multimodal medical imaging including macular optical coherence tomography (OCT), optic disc OCT and fundus images. The goal was to enhance clinical BCVA evaluation efficiency and precision. A retrospective study used data from 2545 patients (4028 eyes) for training, 896 (1006 eyes) for testing and 196 (200 eyes) for internal validation, with an external prospective dataset of 741 patients (1381 eyes). Single-modality analyses employed different backbone networks and feature fusion methods, while multimodal fusion combined modalities using average aggregation, concatenation/reduction and maximum feature selection. Predictive accuracy was measured by mean absolute error (MAE), root mean squared error (RMSE) and R² score. Macular OCT achieved better single-modality prediction than optic disc OCT, with MAE of 3.851 vs 4.977 and RMSE of 7.844 vs 10.026. Fundus images showed an MAE of 3.795 and RMSE of 7.954. Multimodal fusion significantly improved accuracy, with the best results using average aggregation, achieving an MAE of 2.865, RMSE of 6.229 and R² of 0.935. External validation yielded an MAE of 8.38 and RMSE of 10.62. Multimodal fusion provided the most accurate BCVA predictions, demonstrating AI's potential to improve clinical evaluation. However, challenges remain regarding disease diversity and applicability in resource-limited settings.

DINOMotion: advanced robust tissue motion tracking with DINOv2 in 2D-Cine MRI-guided radiotherapy.

Salari S, Spino C, Pharand LA, Lathuiliere F, Rivaz H, Beriault S, Xiao Y

pubmed logopapersAug 14 2025
Accurate tissue motion tracking is critical to ensure treatment outcome and safety in 2D-Cine MRI-guided radiotherapy. This is typically achieved by registration of sequential images, but existing methods often face challenges with large misalignments and lack of interpretability. In this paper, we introduce DINOMotion, a novel deep learning framework based on DINOv2 with Low-Rank Adaptation (LoRA) layers for robust, efficient, and interpretable motion tracking. DINOMotion automatically detects corresponding landmarks to derive optimal image registration, enhancing interpretability by providing explicit visual correspondences between sequential images. The integration of LoRA layers reduces trainable parameters, improving training efficiency, while DINOv2's powerful feature representations offer robustness against large misalignments. Unlike iterative optimization-based methods, DINOMotion directly computes image registration at test time. Our experiments on volunteer and patient datasets demonstrate its effectiveness in estimating both linear and nonlinear transformations, achieving Dice scores of 92.07% for the kidney, 90.90% for the liver, and 95.23% for the lung, with corresponding Hausdorff distances of 5.47 mm, 8.31 mm, and 6.72 mm, respectively. DINOMotion processes each scan in approximately 30ms and consistently outperforms state-of-the-art methods, particularly in handling large misalignments. These results highlight its potential as a robust and interpretable solution for real-time motion tracking in 2D-Cine MRI-guided radiotherapy.

DINOMotion: advanced robust tissue motion tracking with DINOv2 in 2D-Cine MRI-guided radiotherapy

Soorena Salari, Catherine Spino, Laurie-Anne Pharand, Fabienne Lathuiliere, Hassan Rivaz, Silvain Beriault, Yiming Xiao

arxiv logopreprintAug 14 2025
Accurate tissue motion tracking is critical to ensure treatment outcome and safety in 2D-Cine MRI-guided radiotherapy. This is typically achieved by registration of sequential images, but existing methods often face challenges with large misalignments and lack of interpretability. In this paper, we introduce DINOMotion, a novel deep learning framework based on DINOv2 with Low-Rank Adaptation (LoRA) layers for robust, efficient, and interpretable motion tracking. DINOMotion automatically detects corresponding landmarks to derive optimal image registration, enhancing interpretability by providing explicit visual correspondences between sequential images. The integration of LoRA layers reduces trainable parameters, improving training efficiency, while DINOv2's powerful feature representations offer robustness against large misalignments. Unlike iterative optimization-based methods, DINOMotion directly computes image registration at test time. Our experiments on volunteer and patient datasets demonstrate its effectiveness in estimating both linear and nonlinear transformations, achieving Dice scores of 92.07% for the kidney, 90.90% for the liver, and 95.23% for the lung, with corresponding Hausdorff distances of 5.47 mm, 8.31 mm, and 6.72 mm, respectively. DINOMotion processes each scan in approximately 30ms and consistently outperforms state-of-the-art methods, particularly in handling large misalignments. These results highlight its potential as a robust and interpretable solution for real-time motion tracking in 2D-Cine MRI-guided radiotherapy.

Graph Neural Networks for Realistic Bleeding Prediction in Surgical Simulators.

Kakdas YC, De S, Demirel D

pubmed logopapersAug 12 2025
This study presents a novel approach using graph neural networks to predict the risk of internal bleeding using vessel maps derived from patient CT and MRI scans, aimed at enhancing the realism of surgical simulators for emergency scenarios such as trauma, where rapid detection of internal bleeding can be lifesaving. First, medical images are segmented and converted into graph representations of the vasculature, where nodes represent vessel branching points with spatial coordinates and edges encode vessel features such as length and radius. Due to no existing dataset directly labeling bleeding risks, we calculate the bleeding probability for each vessel node using a physics-based heuristic, peripheral vascular resistance via the Hagen-Poiseuille equation. A graph attention network is then trained to regress these probabilities, effectively learning to predict hemorrhage risk from the graph-structured imaging data. The model is trained using a tenfold cross-validation on a combined dataset of 1708 vessel graphs extracted from four public image datasets (MSD, KiTS, AbdomenCT, CT-ORG) with optimization via the Adam optimizer, mean squared error loss, early stopping, and L2 regularization. Our model achieves a mean R-squared of 0.86, reaching up to 0.9188 in optimal configurations and low mean training and validation losses of 0.0069 and 0.0074, respectively, in predicting bleeding risk, with higher performance on well-connected vascular graphs. Finally, we integrate the trained model into an immersive virtual reality environment to simulate intra-abdominal bleeding scenarios for immersive surgical training. The model demonstrates robust predictive performance despite the inherent sparsity of real-life datasets.

PADReg: Physics-Aware Deformable Registration Guided by Contact Force for Ultrasound Sequences

Yimeng Geng, Mingyang Zhao, Fan Xu, Guanglin Cao, Gaofeng Meng, Hongbin Liu

arxiv logopreprintAug 12 2025
Ultrasound deformable registration estimates spatial transformations between pairs of deformed ultrasound images, which is crucial for capturing biomechanical properties and enhancing diagnostic accuracy in diseases such as thyroid nodules and breast cancer. However, ultrasound deformable registration remains highly challenging, especially under large deformation. The inherently low contrast, heavy noise and ambiguous tissue boundaries in ultrasound images severely hinder reliable feature extraction and correspondence matching. Existing methods often suffer from poor anatomical alignment and lack physical interpretability. To address the problem, we propose PADReg, a physics-aware deformable registration framework guided by contact force. PADReg leverages synchronized contact force measured by robotic ultrasound systems as a physical prior to constrain the registration. Specifically, instead of directly predicting deformation fields, we first construct a pixel-wise stiffness map utilizing the multi-modal information from contact force and ultrasound images. The stiffness map is then combined with force data to estimate a dense deformation field, through a lightweight physics-aware module inspired by Hooke's law. This design enables PADReg to achieve physically plausible registration with better anatomical alignment than previous methods relying solely on image similarity. Experiments on in-vivo datasets demonstrate that it attains a HD95 of 12.90, which is 21.34\% better than state-of-the-art methods. The source code is available at https://github.com/evelynskip/PADReg.

Dendrite cross attention for high-dose-rate brachytherapy distribution planning.

Saini S, Liu X

pubmed logopapersAug 10 2025
Cervical cancer is a significant global health issue, and high-dose-rate brachytherapy (HDR-BT) is crucial for its treatment. However, manually creating HDR-BT plans is time-consuming and heavily relies on the planner's expertise, making standardization difficult. This study introduces two advanced deep learning models to address this need: Bi-branch Cross-Attention UNet (BiCA-UNet) and Dendrite Cross-Attention UNet (DCA-UNet). BiCA-UNet enhances the correlation between the CT scan and segmentation maps of the clinical target volume (CTV), applicator, bladder, and rectum. It uses two branches: one processes the stacked input of CT scans and segmentations, and the other focuses on the CTV segmentation. A cross-attention mechanism integrates these branches, improving the model's understanding of the CTV region for accurate dose predictions. Building on BiCA-UNet, DCA-UNet further introduces a primary branch of stacked inputs and three secondary branches for CTV, bladder, and rectum segmentations forming a dendritic structure. Cross attention with bladder and rectum segmentation helps the model understand the regions of organs at risk (OAR), refining dose prediction. Evaluation of these models using multiple metrics indicates that both BiCA-UNet and DCA-UNet significantly improve HDR-BT dose prediction accuracy for various applicator types. The cross-attention mechanisms enhance the feature representation of critical anatomical regions, leading to precise and reliable treatment plans. This research highlights the potential of BiCA-UNet and DCA-UNet in advancing HDR-BT planning, contributing to the standardization of treatment plans, and offering promising directions for future research to improve patient outcomes in the source data.

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.

Coarse-to-Fine Joint Registration of MR and Ultrasound Images via Imaging Style Transfer

Junyi Wang, Xi Zhu, Yikun Guo, Zixi Wang, Haichuan Gao, Le Zhang, Fan Zhang

arxiv logopreprintAug 7 2025
We developed a pipeline for registering pre-surgery Magnetic Resonance (MR) images and post-resection Ultrasound (US) images. Our approach leverages unpaired style transfer using 3D CycleGAN to generate synthetic T1 images, thereby enhancing registration performance. Additionally, our registration process employs both affine and local deformable transformations for a coarse-to-fine registration. The results demonstrate that our approach improves the consistency between MR and US image pairs in most cases.

TotalRegistrator: Towards a Lightweight Foundation Model for CT Image Registration

Xuan Loc Pham, Gwendolyn Vuurberg, Marjan Doppen, Joey Roosen, Tip Stille, Thi Quynh Ha, Thuy Duong Quach, Quoc Vu Dang, Manh Ha Luu, Ewoud J. Smit, Hong Son Mai, Mattias Heinrich, Bram van Ginneken, Mathias Prokop, Alessa Hering

arxiv logopreprintAug 6 2025
Image registration is a fundamental technique in the analysis of longitudinal and multi-phase CT images within clinical practice. However, most existing methods are tailored for single-organ applications, limiting their generalizability to other anatomical regions. This work presents TotalRegistrator, an image registration framework capable of aligning multiple anatomical regions simultaneously using a standard UNet architecture and a novel field decomposition strategy. The model is lightweight, requiring only 11GB of GPU memory for training. To train and evaluate our method, we constructed a large-scale longitudinal dataset comprising 695 whole-body (thorax-abdomen-pelvic) paired CT scans from individual patients acquired at different time points. We benchmarked TotalRegistrator against a generic classical iterative algorithm and a recent foundation model for image registration. To further assess robustness and generalizability, we evaluated our model on three external datasets: the public thoracic and abdominal datasets from the Learn2Reg challenge, and a private multiphase abdominal dataset from a collaborating hospital. Experimental results on the in-house dataset show that the proposed approach generally surpasses baseline methods in multi-organ abdominal registration, with a slight drop in lung alignment performance. On out-of-distribution datasets, it achieved competitive results compared to leading single-organ models, despite not being fine-tuned for those tasks, demonstrating strong generalizability. The source code will be publicly available at: https://github.com/DIAGNijmegen/oncology_image_registration.git.
Page 1 of 14131 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.