Sort by:
Page 1 of 327 results
Next

MedErr-CT: A Visual Question Answering Benchmark for Identifying and Correcting Errors in CT Reports

Sunggu Kyung, Hyungbin Park, Jinyoung Seo, Jimin Sung, Jihyun Kim, Dongyeong Kim, Wooyoung Jo, Yoojin Nam, Sangah Park, Taehee Kwon, Sang Min Lee, Namkug Kim

arxiv logopreprintJun 24 2025
Computed Tomography (CT) plays a crucial role in clinical diagnosis, but the growing demand for CT examinations has raised concerns about diagnostic errors. While Multimodal Large Language Models (MLLMs) demonstrate promising comprehension of medical knowledge, their tendency to produce inaccurate information highlights the need for rigorous validation. However, existing medical visual question answering (VQA) benchmarks primarily focus on simple visual recognition tasks, lacking clinical relevance and failing to assess expert-level knowledge. We introduce MedErr-CT, a novel benchmark for evaluating medical MLLMs' ability to identify and correct errors in CT reports through a VQA framework. The benchmark includes six error categories - four vision-centric errors (Omission, Insertion, Direction, Size) and two lexical error types (Unit, Typo) - and is organized into three task levels: classification, detection, and correction. Using this benchmark, we quantitatively assess the performance of state-of-the-art 3D medical MLLMs, revealing substantial variation in their capabilities across different error types. Our benchmark contributes to the development of more reliable and clinically applicable MLLMs, ultimately helping reduce diagnostic errors and improve accuracy in clinical practice. The code and datasets are available at https://github.com/babbu3682/MedErr-CT.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification with Swin-HAFNet

Amirreza Fateh, Yasin Rezvani, Sara Moayedi, Sadjad Rezvani, Fatemeh Fateh, Mansoor Fateh

arxiv logopreprintJun 17 2025
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, largely due to the lack of high-quality, balanced, and diverse datasets. In this work, we present a new curated MRI dataset designed specifically for brain tumor segmentation and classification tasks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans annotated by certified radiologists and physicians, spanning three major tumor types-glioma, meningioma, and pituitary-as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we propose a transformer-based segmentation model and benchmark it against established baselines. Our method achieves the highest weighted mean Intersection-over-Union (IoU) of 82.3%, with improvements observed across all tumor categories. Importantly, this study serves primarily as an introduction to the dataset, establishing foundational benchmarks for future research. We envision this dataset as a valuable resource for advancing machine learning applications in neuro-oncology, supporting both academic research and clinical decision-support development. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/

An 11,000-Study Open-Access Dataset of Longitudinal Magnetic Resonance Images of Brain Metastases

Saahil Chadha, David Weiss, Anastasia Janas, Divya Ramakrishnan, Thomas Hager, Klara Osenberg, Klara Willms, Joshua Zhu, Veronica Chiang, Spyridon Bakas, Nazanin Maleki, Durga V. Sritharan, Sven Schoenherr, Malte Westerhoff, Matthew Zawalich, Melissa Davis, Ajay Malhotra, Khaled Bousabarah, Cornelius Deuschl, MingDe Lin, Sanjay Aneja, Mariam S. Aboian

arxiv logopreprintJun 16 2025
Brain metastases are a common complication of systemic cancer, affecting over 20% of patients with primary malignancies. Longitudinal magnetic resonance imaging (MRI) is essential for diagnosing patients, tracking disease progression, assessing therapeutic response, and guiding treatment selection. However, the manual review of longitudinal imaging is time-intensive, especially for patients with multifocal disease. Artificial intelligence (AI) offers opportunities to streamline image evaluation, but developing robust AI models requires comprehensive training data representative of real-world imaging studies. Thus, there is an urgent necessity for a large dataset with heterogeneity in imaging protocols and disease presentation. To address this, we present an open-access dataset of 11,884 longitudinal brain MRI studies from 1,430 patients with clinically confirmed brain metastases, paired with clinical and image metadata. The provided dataset will facilitate the development of AI models to assist in the long-term management of patients with brain metastasis.

BreastDCEDL: Curating a Comprehensive DCE-MRI Dataset and developing a Transformer Implementation for Breast Cancer Treatment Response Prediction

Naomi Fridman, Bubby Solway, Tomer Fridman, Itamar Barnea, Anat Goldshtein

arxiv logopreprintJun 13 2025
Breast cancer remains a leading cause of cancer-related mortality worldwide, making early detection and accurate treatment response monitoring critical priorities. We present BreastDCEDL, a curated, deep learning-ready dataset comprising pre-treatment 3D Dynamic Contrast-Enhanced MRI (DCE-MRI) scans from 2,070 breast cancer patients drawn from the I-SPY1, I-SPY2, and Duke cohorts, all sourced from The Cancer Imaging Archive. The raw DICOM imaging data were rigorously converted into standardized 3D NIfTI volumes with preserved signal integrity, accompanied by unified tumor annotations and harmonized clinical metadata including pathologic complete response (pCR), hormone receptor (HR), and HER2 status. Although DCE-MRI provides essential diagnostic information and deep learning offers tremendous potential for analyzing such complex data, progress has been limited by lack of accessible, public, multicenter datasets. BreastDCEDL addresses this gap by enabling development of advanced models, including state-of-the-art transformer architectures that require substantial training data. To demonstrate its capacity for robust modeling, we developed the first transformer-based model for breast DCE-MRI, leveraging Vision Transformer (ViT) architecture trained on RGB-fused images from three contrast phases (pre-contrast, early post-contrast, and late post-contrast). Our ViT model achieved state-of-the-art pCR prediction performance in HR+/HER2- patients (AUC 0.94, accuracy 0.93). BreastDCEDL includes predefined benchmark splits, offering a framework for reproducible research and enabling clinically meaningful modeling in breast cancer imaging.

BraTS orchestrator : Democratizing and Disseminating state-of-the-art brain tumor image analysis

Florian Kofler, Marcel Rosier, Mehdi Astaraki, Ujjwal Baid, Hendrik Möller, Josef A. Buchner, Felix Steinbauer, Eva Oswald, Ezequiel de la Rosa, Ivan Ezhov, Constantin von See, Jan Kirschke, Anton Schmick, Sarthak Pati, Akis Linardos, Carla Pitarch, Sanyukta Adap, Jeffrey Rudie, Maria Correia de Verdier, Rachit Saluja, Evan Calabrese, Dominic LaBella, Mariam Aboian, Ahmed W. Moawad, Nazanin Maleki, Udunna Anazodo, Maruf Adewole, Marius George Linguraru, Anahita Fathi Kazerooni, Zhifan Jiang, Gian Marco Conte, Hongwei Li, Juan Eugenio Iglesias, Spyridon Bakas, Benedikt Wiestler, Marie Piraud, Bjoern Menze

arxiv logopreprintJun 13 2025
The Brain Tumor Segmentation (BraTS) cluster of challenges has significantly advanced brain tumor image analysis by providing large, curated datasets and addressing clinically relevant tasks. However, despite its success and popularity, algorithms and models developed through BraTS have seen limited adoption in both scientific and clinical communities. To accelerate their dissemination, we introduce BraTS orchestrator, an open-source Python package that provides seamless access to state-of-the-art segmentation and synthesis algorithms for diverse brain tumors from the BraTS challenge ecosystem. Available on GitHub (https://github.com/BrainLesion/BraTS), the package features intuitive tutorials designed for users with minimal programming experience, enabling both researchers and clinicians to easily deploy winning BraTS algorithms for inference. By abstracting the complexities of modern deep learning, BraTS orchestrator democratizes access to the specialized knowledge developed within the BraTS community, making these advances readily available to broader neuro-radiology and neuro-oncology audiences.

The RSNA Lumbar Degenerative Imaging Spine Classification (LumbarDISC) Dataset

Tyler J. Richards, Adam E. Flanders, Errol Colak, Luciano M. Prevedello, Robyn L. Ball, Felipe Kitamura, John Mongan, Maryam Vazirabad, Hui-Ming Lin, Anne Kendell, Thanat Kanthawang, Salita Angkurawaranon, Emre Altinmakas, Hakan Dogan, Paulo Eduardo de Aguiar Kuriki, Arjuna Somasundaram, Christopher Ruston, Deniz Bulja, Naida Spahovic, Jennifer Sommer, Sirui Jiang, Eduardo Moreno Judice de Mattos Farina, Eduardo Caminha Nunes, Michael Brassil, Megan McNamara, Johanna Ortiz, Jacob Peoples, Vinson L. Uytana, Anthony Kam, Venkata N. S. Dola, Daniel Murphy, David Vu, Dataset Contributor Group, Dataset Annotator Group, Competition Data Notebook Group, Jason F. Talbott

arxiv logopreprintJun 10 2025
The Radiological Society of North America (RSNA) Lumbar Degenerative Imaging Spine Classification (LumbarDISC) dataset is the largest publicly available dataset of adult MRI lumbar spine examinations annotated for degenerative changes. The dataset includes 2,697 patients with a total of 8,593 image series from 8 institutions across 6 countries and 5 continents. The dataset is available for free for non-commercial use via Kaggle and RSNA Medical Imaging Resource of AI (MIRA). The dataset was created for the RSNA 2024 Lumbar Spine Degenerative Classification competition where competitors developed deep learning models to grade degenerative changes in the lumbar spine. The degree of spinal canal, subarticular recess, and neural foraminal stenosis was graded at each intervertebral disc level in the lumbar spine. The images were annotated by expert volunteer neuroradiologists and musculoskeletal radiologists from the RSNA, American Society of Neuroradiology, and the American Society of Spine Radiology. This dataset aims to facilitate research and development in machine learning and lumbar spine imaging to lead to improved patient care and clinical efficiency.

HAIBU-ReMUD: Reasoning Multimodal Ultrasound Dataset and Model Bridging to General Specific Domains

Shijie Wang, Yilun Zhang, Zeyu Lai, Dexing Kong

arxiv logopreprintJun 9 2025
Multimodal large language models (MLLMs) have shown great potential in general domains but perform poorly in some specific domains due to a lack of domain-specific data, such as image-text data or vedio-text data. In some specific domains, there is abundant graphic and textual data scattered around, but lacks standardized arrangement. In the field of medical ultrasound, there are ultrasonic diagnostic books, ultrasonic clinical guidelines, ultrasonic diagnostic reports, and so on. However, these ultrasonic materials are often saved in the forms of PDF, images, etc., and cannot be directly used for the training of MLLMs. This paper proposes a novel image-text reasoning supervised fine-tuning data generation pipeline to create specific domain quadruplets (image, question, thinking trace, and answer) from domain-specific materials. A medical ultrasound domain dataset ReMUD is established, containing over 45,000 reasoning and non-reasoning supervised fine-tuning Question Answering (QA) and Visual Question Answering (VQA) data. The ReMUD-7B model, fine-tuned on Qwen2.5-VL-7B-Instruct, outperforms general-domain MLLMs in medical ultrasound field. To facilitate research, the ReMUD dataset, data generation codebase, and ReMUD-7B parameters will be released at https://github.com/ShiDaizi/ReMUD, addressing the data shortage issue in specific domain MLLMs.

APTOS-2024 challenge report: Generation of synthetic 3D OCT images from fundus photographs

Bowen Liu, Weiyi Zhang, Peranut Chotcomwongse, Xiaolan Chen, Ruoyu Chen, Pawin Pakaymaskul, Niracha Arjkongharn, Nattaporn Vongsa, Xuelian Cheng, Zongyuan Ge, Kun Huang, Xiaohui Li, Yiru Duan, Zhenbang Wang, BaoYe Xie, Qiang Chen, Huazhu Fu, Michael A. Mahr, Jiaqi Qu, Wangyiyang Chen, Shiye Wang, Yubo Tan, Yongjie Li, Mingguang He, Danli Shi, Paisan Ruamviboonsuk

arxiv logopreprintJun 9 2025
Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.
Page 1 of 327 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.