Sort by:
Page 87 of 2262251 results

Artificial intelligence in imaging diagnosis of liver tumors: current status and future prospects.

Hori M, Suzuki Y, Sofue K, Sato J, Nishigaki D, Tomiyama M, Nakamoto A, Murakami T, Tomiyama N

pubmed logopapersJun 19 2025
Liver cancer remains a significant global health concern, ranking as the sixth most common malignancy and the third leading cause of cancer-related deaths worldwide. Medical imaging plays a vital role in managing liver tumors, particularly hepatocellular carcinoma (HCC) and metastatic lesions. However, the large volume and complexity of imaging data can make accurate and efficient interpretation challenging. Artificial intelligence (AI) is recognized as a promising tool to address these challenges. Therefore, this review aims to explore the recent advances in AI applications in liver tumor imaging, focusing on key areas such as image reconstruction, image quality enhancement, lesion detection, tumor characterization, segmentation, and radiomics. Among these, AI-based image reconstruction has already been widely integrated into clinical workflows, helping to enhance image quality while reducing radiation exposure. While the adoption of AI-assisted diagnostic tools in liver imaging has lagged behind other fields, such as chest imaging, recent developments are driving their increasing integration into clinical practice. In the future, AI is expected to play a central role in various aspects of liver cancer care, including comprehensive image analysis, treatment planning, response evaluation, and prognosis prediction. This review offers a comprehensive overview of the status and prospects of AI applications in liver tumor imaging.

Multitask Deep Learning for Automated Segmentation and Prognostic Stratification of Endometrial Cancer via Biparametric MRI.

Yan R, Zhang X, Cao Q, Xu J, Chen Y, Qin S, Zhang S, Zhao W, Xing X, Yang W, Lang N

pubmed logopapersJun 19 2025
Endometrial cancer (EC) is a common gynecologic malignancy; accurate assessment of key prognostic factors is important for treatment planning. To develop a deep learning (DL) framework based on biparametric MRI for automated segmentation and multitask classification of EC key prognostic factors, including grade, stage, histological subtype, lymphovascular space invasion (LVSI), and deep myometrial invasion (DMI). Retrospective. A total of 325 patients with histologically confirmed EC were included: 211 training, 54 validation, and 60 test cases. T2-weighted imaging (T2WI, FSE/TSE) and diffusion-weighted imaging (DWI, SS-EPI) sequences at 1.5 and 3 T. The DL model comprised tumor segmentation and multitask classification. Manual delineation on T2WI and DWI acted as the reference standard for segmentation. Separate models were trained using T2WI alone, DWI alone and combined T2WI + DWI to classify dichotomized key prognostic factors. Performance was assessed in validation and test cohorts. For DMI, the combined model's was compared with visual assessment by four radiologists (with 1, 4, 7, and 20 years' experience), each of whom independently reviewed all cases. Segmentation was evaluated using the dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), Hausdorff distance (HD95), and average surface distance (ASD). Classification performance was assessed using area under the receiver operating characteristic curve (AUC). Model AUCs were compared using DeLong's test. p < 0.05 was considered significant. In the test cohort, DSCs were 0.80 (T2WI) and 0.78 (DWI) and JSCs were 0.69 for both. HD95 and ASD were 7.02/1.71 mm (T2WI) versus 10.58/2.13 mm (DWI). The classification framework achieved AUCs of 0.78-0.94 (validation) and 0.74-0.94 (test). For DMI, the combined model performed comparably to radiologists (p = 0.07-0.84). The unified DL framework demonstrates strong EC segmentation and classification performance, with high accuracy across multiple tasks. 3. Stage 3.

Ensuring integrity in dental education: Developing a novel AI model for consistent and traceable image analysis in preclinical endodontic procedures.

Ibrahim M, Omidi M, Guentsch A, Gaffney J, Talley J

pubmed logopapersJun 19 2025
Academic integrity is crucial in dental education, especially during practical exams assessing competencies. Traditional oversight may not detect sophisticated academic dishonesty methods like radiograph substitution or tampering. This study aimed to develop and evaluate a novel artificial intelligence (AI) model utilizing a Siamese neural network to detect inconsistencies in radiographic images taken for root canal treatment (RCT) procedures in preclinical endodontic courses, thereby enhancing educational integrity. A Siamese neural network was designed to compare radiographs from different RCT procedures. The model was trained on 3390 radiographs, with data augmentation applied to improve generalizability. The dataset was split into training, validation, and testing subsets. Performance metrics included accuracy, precision, sensitivity (recall), and F1-score. Cross-validation and hyperparameter tuning optimized the model. Our AI model achieved an accuracy of 89.31%, a precision of 76.82%, a sensitivity of 84.82%, and an F1-score of 80.50%. The optimal similarity threshold was 0.48, where maximum accuracy was observed. The confusion matrix indicated a high rate of correct classifications, and cross-validation confirmed the model's robustness with a standard deviation of 1.95% across folds. The AI-driven Siamese neural network effectively detects radiographic inconsistencies in RCT preclinical procedures. Implementing this novel model will serve as an objective tool to uphold academic integrity in dental education, enhance the fairness and reliability of assessments, promote a culture of honesty amongst students, and reduce the administrative burden on educators.

Multi-domain information fusion diffusion model (MDIF-DM) for limited-angle computed tomography.

Ma G, Xia D, Zhao S

pubmed logopapersJun 19 2025
BackgroundLimited-angle Computed Tomography imaging suffers from severe artifacts in the reconstructed image due to incomplete projection data. Deep learning methods have been developed currently to address the challenges of robustness and low contrast of the limited-angle CT reconstruction with a relatively effective way.ObjectiveTo improve the low contrast of the current limited-angle CT reconstruction image, enhance the robustness of the reconstruction method and the contrast of the limited-angle image.MethodIn this paper, we proposed a limited-angle CT reconstruction method that combining the Fourier domain reweighting and wavelet domain enhancement, which fused information from different domains, thereby getting high-resolution reconstruction images.ResultsWe verified the feasibility and effectiveness of the proposed solution through experiments, and the reconstruction results are improved compared with the state-of-the-art methods.ConclusionsThe proposed method enhances some features of the original image domain data from different domains, which is beneficial to the reasonable diffusion and restoration of diffuse detail texture features.

Non-Invasive Diagnosis of Chronic Myocardial Infarction via Composite In-Silico-Human Data Learning.

Mehdi RR, Kadivar N, Mukherjee T, Mendiola EA, Bersali A, Shah DJ, Karniadakis G, Avazmohammadi R

pubmed logopapersJun 19 2025
Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, a completely non-invasive methodology is developed to identify the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, the remarkable performance of a multi-fidelity ML model is demonstrated, which combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. The results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

Machine learning-based MRI radiomics predict IL18 expression and overall survival of low-grade glioma patients.

Zhang Z, Xiao Y, Liu J, Xiao F, Zeng J, Zhu H, Tu W, Guo H

pubmed logopapersJun 19 2025
Interleukin-18 has broad immune regulatory functions. Genomic data and enhanced Magnetic Resonance Imaging data related to LGG patients were downloaded from The Cancer Genome Atlas and Cancer Imaging Archive, and the constructed model was externally validated using hospital MRI enhanced images and clinical pathological features. Radiomic feature extraction was performed using "PyRadiomics", feature selection was conducted using Maximum Relevance Minimum Redundancy and Recursive Feature Elimination methods, and a model was built using the Gradient Boosting Machine algorithm to predict the expression status of IL18. The constructed radiomics model achieved areas under the receiver operating characteristic curve of 0.861, 0.788, and 0.762 in the TCIA training dataset (n = 98), TCIA validation dataset (n = 41), and external validation dataset (n = 50). Calibration curves and decision curve analysis demonstrated the calibration and high clinical utility of the model. The radiomics model based on enhanced MRI can effectively predict the expression status of IL18 and the prognosis of LGG.

Optimization of Photon-Counting CT Myelography for the Detection of CSF-Venous Fistulas Using Convolutional Neural Network Denoising: A Comparative Analysis of Reconstruction Techniques.

Madhavan AA, Zhou Z, Farnsworth PJ, Thorne J, Amrhein TJ, Kranz PG, Brinjikji W, Cutsforth-Gregory JK, Kodet ML, Weber NM, Thompson G, Diehn FE, Yu L

pubmed logopapersJun 19 2025
Photon-counting detector CT myelography (PCD-CTM) is a recently described technique used for detecting spinal CSF leaks, including CSF-venous fistulas. Various image reconstruction techniques, including smoother-versus-sharper kernels and virtual monoenergetic images, are available with photon-counting CT. Moreover, denoising algorithms have shown promise in improving sharp kernel images. No prior studies have compared image quality of these different reconstructions on photon-counting CT myelography. Here, we sought to compare several image reconstructions using various parameters important for the detection of CSF-venous fistulas. We performed a retrospective review of all consecutive decubitus PCD-CTM between February 1, 2022, and August 1, 2024, at 1 institution. We included patients whose studies had the following reconstructions: Br48-40 keV virtual monoenergetic reconstruction, Br56 low-energy threshold (T3D), Qr89-T3D denoised with quantum iterative reconstruction, and Qr89-T3D denoised with a convolutional neural network algorithm. We excluded patients who had extradural CSF on preprocedural imaging or a technically unsatisfactory myelogram-. All 4 reconstructions were independently reviewed by 2 neuroradiologists. Each reviewer rated spatial resolution, noise, the presence of artifacts, image quality, and diagnostic confidence (whether positive or negative) on a 1-5 scale. These metrics were compared using the Friedman test. Additionally, noise and contrast were quantitatively assessed by a third reviewer and compared. The Qr89 reconstructions demonstrated higher spatial resolution than their Br56 or Br48-40keV counterparts. Qr89 with convolutional neural network denoising had less noise, better image quality, and improved diagnostic confidence compared with Qr89 with quantum iterative reconstruction denoising. The Br48-40keV reconstruction had the highest contrast-to-noise ratio quantitatively. In our study, the sharpest quantitative kernel (Qr89-T3D) with convolutional neural network denoising demonstrated the best performance regarding spatial resolution, noise level, image quality, and diagnostic confidence for detecting or excluding the presence of a CSF-venous fistula.

BrainTract: segmentation of white matter fiber tractography and analysis of structural connectivity using hybrid convolutional neural network.

Kumar PR, Shilpa B, Jha RK

pubmed logopapersJun 19 2025
Tractography uses diffusion Magnetic Resonance Imaging (dMRI) to noninvasively reconstruct brain white matter (WM) tracts, with Convolutional Neural Network (CNNs) like U-Net significantly advancing accuracy in medical image segmentation. This work proposes a metaheuristic optimization algorithm-based CNN architecture. This architecture combines the Inception-ResNet-V2 module and the densely connecting convolutional module (DI) into the Spatial Attention U-Net (SAU-Net) architecture for segmenting WM fiber tracts and analyzing the brain's structural connectivity. The proposed network model (DISAU-Net) consists of the following parts are; First, the Inception-ResNet-V2 block is used to replace the standard convolutional layers and expand the network's width; Second, the Dense-Inception block is used to extract features and deepen the network without the need for any additional parameters; Third, the down-sampling block is used to speed up training by decreasing the size of feature maps, and the up-sampling block is used to increase the maps' resolution. In addition, the parameter existing in the classifiers is randomly selected with the Gray Wolf Optimization (GWO) technique to boost the performance of the CNN architecture. We validated our method by segmenting WM tracts on dMRI scans of 280 subjects from the human connectome project (HCP) database. The proposed method is far more efficient than current methods. It offers unprecedented quantitative evaluation with high tract segmentation consistency, achieving accuracy of 97.10%, dice score of 96.88%, recall 95.74%, f1-score 94.79% for fiber tracts. The results showed that the proposed method is a potential approach for segmenting WM fiber tracts and analyzing the brain's structural connectivity.

Qualitative and quantitative analysis of functional cardiac MRI using a novel compressed SENSE sequence with artificial intelligence image reconstruction.

Konstantin K, Christian LM, Lenhard P, Thomas S, Robert T, Luisa LI, David M, Matej G, Kristina S, Philip NC

pubmed logopapersJun 19 2025
To evaluate the feasibility of combining Compressed SENSE (CS) with a newly developed deep learning-based algorithm (CS-AI) using a Convolutional Neural Network to accelerate balanced steady-state free precession (bSSFP)-sequences for cardiac magnetic resonance imaging (MRI). 30 healthy volunteers were examined prospectively with a 3 T MRI scanner. We acquired CINE bSSFP sequences for short axis (SA, multi-breath-hold) and four-chamber (4CH)-view of the heart. For each sequence, four different CS accelerations and CS-AI reconstructions with three different denoising parameters, CS-AI medium, CS-AI strong, and CS-AI complete, were used. Cardiac left ventricular (LV) function (i.e., ejection fraction, end-diastolic volume, end-systolic volume, and LV mass) was analyzed using the SA sequences in every CS factor and each AI level. Two readers, blinded to the acceleration and denoising levels, evaluated all sequences regarding image quality and artifacts using a 5-point Likert scale. Friedman and Dunn's multiple comparison tests were used for qualitative evaluation, ANOVA and Tukey Kramer test for quantitative metrics. Scan time could be decreased up to 57 % for the SA-Sequences and up to 56 % for the 4CH-Sequences compared to the clinically established sequences consisting of SA-CS3 and 4CH-CS2,5 (SA-CS3: 112 s vs. SA-CS6: 48 s; 4CH-CS2,5: 9 s vs. 4CH-CS5: 4 s, p < 0.001). LV-functional analysis was not compromised by using accelerated MRI sequences combined with CS-AI reconstructions (all p > 0.05). The image quality loss and artifact increase accompanying increasing acceleration levels could be entirely compensated by CS-AI post-processing, with the best results for image quality using the combination of the highest CS factor with strong AI (SA-CINE: Coef.:1.31, 95 %CI:1.05-1.58; 4CH-CINE: Coef.:1.18, 95 %CI:1.05-1.58; both p < 0.001), and with complete AI regarding the artifact score (SA-CINE: Coef.:1.33, 95 %CI:1.06-1.60; 4CH-CINE: Coef.:1.31, 95 %CI:0.86-1.77; both p < 0.001). Combining CS sequences with AI-based image reconstruction for denoising significantly decreases scan time in cardiac imaging while upholding LV functional analysis accuracy and delivering stable outcomes for image quality and artifact reduction. This integration presents a promising advancement in cardiac MRI, promising improved efficiency without compromising diagnostic quality.
Page 87 of 2262251 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.