Sort by:
Page 80 of 3203198 results

Artificial Intelligence Empowers Novice Users to Acquire Diagnostic-Quality Echocardiography.

Trost B, Rodrigues L, Ong C, Dezellus A, Goldberg YH, Bouchat M, Roger E, Moal O, Singh V, Moal B, Lafitte S

pubmed logopapersJul 22 2025
Cardiac ultrasound exams provide real-time data to guide clinical decisions but require highly trained sonographers. Artificial intelligence (AI) that uses deep learning algorithms to guide novices in the acquisition of diagnostic echocardiographic studies may broaden access and improve care. The objective of this trial was to evaluate whether nurses without previous ultrasound experience (novices) could obtain diagnostic-quality acquisitions of 10 echocardiographic views using AI-based software. This noninferiority study was prospective, international, nonrandomized, and conducted at 2 medical centers, in the United States and France, from November 2023 to August 2024. Two limited cardiac exams were performed on adult patients scheduled for a clinically indicated echocardiogram; one was conducted by a novice using AI guidance and one by an expert (experienced sonographer or cardiologist) without it. Primary endpoints were evaluated by 5 experienced cardiologists to assess whether the novice exam was of sufficient quality to visually analyze the left ventricular size and function, the right ventricle size, and the presence of nontrivial pericardial effusion. Secondary endpoints included 8 additional cardiac parameters. A total of 240 patients (mean age 62.6 years; 117 women (48.8%); mean body mass index 26.6 kg/m<sup>2</sup>) completed the study. One hundred percent of the exams performed by novices with the studied software were of sufficient quality to assess the primary endpoints. Cardiac parameters assessed in exams conducted by novices and experts were strongly correlated. AI-based software provides a safe means for novices to perform diagnostic-quality cardiac ultrasounds after a short training period.

DualSwinUnet++: An enhanced Swin-Unet architecture with dual decoders for PTMC segmentation.

Dialameh M, Rajabzadeh H, Sadeghi-Goughari M, Sim JS, Kwon HJ

pubmed logopapersJul 22 2025
Precise segmentation of papillary thyroid microcarcinoma (PTMC) during ultrasound-guided radiofrequency ablation (RFA) is critical for effective treatment but remains challenging due to acoustic artifacts, small lesion size, and anatomical variability. In this study, we propose DualSwinUnet++, a dual-decoder transformer-based architecture designed to enhance PTMC segmentation by incorporating thyroid gland context. DualSwinUnet++ employs independent linear projection heads for each decoder and a residual information flow mechanism that passes intermediate features from the first (thyroid) decoder to the second (PTMC) decoder via concatenation and transformation. These design choices allow the model to condition tumor prediction explicitly on gland morphology without shared gradient interference. Trained on a clinical ultrasound dataset with 691 annotated RFA images and evaluated against state-of-the-art models, DualSwinUnet++ achieves superior Dice and Jaccard scores while maintaining sub-200ms inference latency. The results demonstrate the model's suitability for near real-time surgical assistance and its effectiveness in improving segmentation accuracy in challenging PTMC cases.

Semi-supervised motion flow and myocardial strain estimation in cardiac videos using distance maps and memory networks.

Portal N, Dietenbeck T, Khan S, Nguyen V, Prigent M, Zarai M, Bouazizi K, Sylvain J, Redheuil A, Montalescot G, Kachenoura N, Achard C

pubmed logopapersJul 22 2025
Myocardial strain plays a crucial role in diagnosing heart failure and myocardial infarction. Its computation relies on assessing heart muscle motion throughout the cardiac cycle. This assessment can be performed by following key points on each frame of a cine Magnetic Resonance Imaging (MRI) sequence. The use of segmentation labels yields more accurate motion estimation near heart muscle boundaries. However, since few frames in a cardiac sequence usually have segmentation labels, most methods either rely on annotated pairs of frames/volumes, greatly reducing available data, or use all frames of the cardiac cycle without segmentation supervision. Moreover, these techniques rarely utilize more than two phases during training. In this work, a new semi-supervised motion estimation algorithm using all frames of the cardiac sequence is presented. The distance map generated from the end-diastolic segmentation label is used to weight loss functions. The method is tested on an in-house dataset containing 271 patients. Several deep learning image registration and tracking algorithms were retrained on our dataset and compared to our approach. The proposed approach achieves an average End Point Error (EPE) of 1.02mm, against 1.19mm for RAFT (Recurrent All-Pairs Field Transforms). Using the end-diastolic distance map further improves this metric to 0.95mm compared to 0.91 for the fully supervised version. Correlations in systolic peak were 0.83 and 0.90 for the left ventricular global radial and circumferential strain respectively, and 0.91 for the right ventricular circumferential strain.

Verification of resolution and imaging time for high-resolution deep learning reconstruction techniques.

Harada S, Takatsu Y, Murayama K, Sano Y, Ikedo M

pubmed logopapersJul 22 2025
Magnetic resonance imaging (MRI) involves a trade-off between imaging time, signal-to-noise ratio (SNR), and spatial resolution. Reducing the imaging time often leads to a lower SNR or resolution. Deep-learning-based reconstruction (DLR) methods have been introduced to address these limitations. Image-domain super-resolution DLR enables high resolution without additional image scans. High-quality images can be obtained within a shorter timeframe by appropriately configuring DLR parameters. It is necessary to maximize the performance of super-resolution DLR to enable efficient use in MRI. We evaluated the performance of a vendor-provided super-resolution DLR method (PIQE) on a Canon 3 T MRI scanner using an edge phantom and clinical brain images from eight patients. Quantitative assessment included structural similarity index (SSIM), peak SNR (PSNR), root mean square error (RMSE), and full width at half maximum (FWHM). FWHM was used to quantitatively assess spatial resolution and image sharpness. Visual evaluation using a five-point Likert scale was also performed to assess perceived image quality. Image domain super-resolution DLR reduced scan time by up to 70 % while preserving the structural image quality. Acquisition matrices of 0.87 mm/pixel or finer with a zoom ratio of ×2 yielded SSIM ≥0.80, PSNR ≥35 dB, and non-significant FWHM differences compared to full-resolution references. In contrast, aggressive downsampling (zoom ratio 3 from low-resolution matrices) led to image degradation including truncation artifacts and reduced sharpness. These results clarify the optimal use of PIQE as an image-domain super-resolution method and provide practical guidance for its application in clinical MRI workflows.

Machine learning approach effectively discriminates between Parkinson's disease and progressive supranuclear palsy: multi-level indices of rs-fMRI.

Cheng W, Liang X, Zeng W, Guo J, Yin Z, Dai J, Hong D, Zhou F, Li F, Fang X

pubmed logopapersJul 22 2025
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach. A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales. The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates. The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level.

Artificial intelligence in thyroid eye disease imaging: A systematic review.

Zhang H, Li Z, Chan HC, Song X, Zhou H, Fan X

pubmed logopapersJul 22 2025
Thyroid eye disease (TED) is a common, complex orbital disorder characterized by soft-tissue changes visible on imaging. Artificial intelligence (AI) offers promises for improving TED diagnosis and treatment; however, no systematic review has yet characterized the research landscape, key challenges, and future directions. We followed PRISMA guidelines to search multiple databases until January, 2025, for studies applying AI to computed tomography (CT), magnetic resonance imaging, and nuclear, facial or retinal imaging in TED patients. Using the APPRAISE-AI tool, we assessed study quality and included 41 studies covering various AI applications. Sample sizes ranged from 33 to 2,288 participants, predominantly East Asian. CT and facial imaging were the most common modalities, reported in 16 and 13 articles, respectively. Studies addressed clinical tasks-diagnosis, activity assessment, severity grading, and treatment prediction-and technical tasks-classification, segmentation, and image generation-with classification being the most frequent. Researchers primarily employed deep-learning models, such as residual network (ResNet) and Visual Geometry Group (VGG). Overall, the majority of the studies were of moderate quality. Image-based AI shows strong potential to improve diagnostic accuracy and guide personalized treatment strategies in TED. Future research should prioritize robust study designs, the creation of public datasets, multimodal imaging integration, and interdisciplinary collaboration to accelerate clinical translation.

LA-Seg: Disentangled sinogram pattern-guided transformer for lesion segmentation in limited-angle computed tomography.

Yoon JH, Lee YJ, Yoo SB

pubmed logopapersJul 21 2025
Limited-angle computed tomography (LACT) offers patient-friendly benefits, such as rapid scanning and reduced radiation exposure. However, the incompleteness of data in LACT often causes notable artifacts, posing challenges for precise medical interpretation. Although numerous approaches have been introduced to reconstruct LACT images into complete computed tomography (CT) scans, they focus on improving image quality and operate separately from lesion segmentation models, often overlooking essential lesion-specific information. This is because reconstruction models are primarily optimized to satisfy overall image quality rather than local lesion-specific regions, in a non-end-to-end setup where each component is optimized independently and may not contribute to reaching the global minimum of the overall objective function. To address this problem, we propose LA-Seg, a transformer-based segmentation model using the sinogram domain of LACT data. The LA-Seg method uses an auxiliary reconstruction task to estimates incomplete sinogram regions to enhance segmentation robustness. Applying transformers adapted from video prediction models captures the spatial structure and sequential patterns in sinograms and reconstructs features in incomplete regions using a disentangled representation guided by distinctive patterns. We propose contrastive abnormal feature loss to distinguish between normal and abnormal regions better. The experimental results demonstrate that LA-Seg consistently surpasses existing medical segmentation approaches in diverse LACT conditions. The source code is provided at https://github.com/jhyoon964/LA-Seg.

Artificial intelligence in radiology: diagnostic sensitivity of ChatGPT for detecting hemorrhages in cranial computed tomography scans.

Bayar-Kapıcı O, Altunışık E, Musabeyoğlu F, Dev Ş, Kaya Ö

pubmed logopapersJul 21 2025
Chat Generative Pre-trained Transformer (ChatGPT)-4V, a large language model developed by OpenAI, has been explored for its potential application in radiology. This study assesses ChatGPT-4V's diagnostic performance in identifying various types of intracranial hemorrhages in non-contrast cranial computed tomography (CT) images. Intracranial hemorrhages were presented to ChatGPT using the clearest 2D imaging slices. The first question, "Q1: Which imaging technique is used in this image?" was asked to determine the imaging modality. ChatGPT was then prompted with the second question, "Q2: What do you see in this image and what is the final diagnosis?" to assess whether the CT scan was normal or showed pathology. For CT scans containing hemorrhage that ChatGPT did not interpret correctly, a follow-up question-"Q3: There is bleeding in this image. Which type of bleeding do you see?"-was used to evaluate whether this guidance influenced its response. ChatGPT accurately identified the imaging technique (Q1) in all cases but demonstrated difficulty diagnosing epidural hematoma (EDH), subdural hematoma (SDH), and subarachnoid hemorrhage (SAH) when no clues were provided (Q2). When a hemorrhage clue was introduced (Q3), ChatGPT correctly identified EDH in 16.7% of cases, SDH in 60%, and SAH in 15.6%, and achieved 100% diagnostic accuracy for hemorrhagic cerebrovascular disease. Its sensitivity, specificity, and accuracy for Q2 were 23.6%, 92.5%, and 57.4%, respectively. These values improved substantially with the clue in Q3, with sensitivity rising to 50.9% and accuracy to 71.3%. ChatGPT also demonstrated higher diagnostic accuracy in larger hemorrhages in EDH and SDH images. Although the model performs well in recognizing imaging modalities, its diagnostic accuracy substantially improves when guided by additional contextual information. These findings suggest that ChatGPT's diagnostic performance improves with guided prompts, highlighting its potential as a supportive tool in clinical radiology.

Facilitators and Barriers to Implementing AI in Routine Medical Imaging: Systematic Review and Qualitative Analysis.

Wenderott K, Krups J, Weigl M, Wooldridge AR

pubmed logopapersJul 21 2025
Artificial intelligence (AI) is rapidly advancing in health care, particularly in medical imaging, offering potential for improved efficiency and reduced workload. However, there is little systematic evidence on process factors for successful AI technology implementation into clinical workflows. This study aimed to systematically assess and synthesize the facilitators and barriers to AI implementation reported in studies evaluating AI solutions in routine medical imaging. We conducted a systematic review of 6 medical databases. Using a qualitative content analysis, we extracted the reported facilitators and barriers, outcomes, and moderators in the implementation process of AI. Two reviewers analyzed and categorized the data separately. We then used epistemic network analysis to explore their relationships across different stages of AI implementation. Our search yielded 13,756 records. After screening, we included 38 original studies in our final review. We identified 12 key dimensions and 37 subthemes that influence the implementation of AI in health care workflows. Key dimensions included evaluation of AI use and fit into workflow, with frequency depending considerably on the stage of the implementation process. In total, 20 themes were mentioned as both facilitators and barriers to AI implementation. Studies often focused predominantly on performance metrics over the experiences or outcomes of clinicians. This systematic review provides a thorough synthesis of facilitators and barriers to successful AI implementation in medical imaging. Our study highlights the usefulness of AI technologies in clinical care and the fit of their integration into routine clinical workflows. Most studies did not directly report facilitators and barriers to AI implementation, underscoring the importance of comprehensive reporting to foster knowledge sharing. Our findings reveal a predominant focus on technological aspects of AI adoption in clinical work, highlighting the need for holistic, human-centric consideration to fully leverage the potential of AI in health care. PROSPERO CRD42022303439; https://www.crd.york.ac.uk/PROSPERO/view/CRD42022303439. RR2-10.2196/40485.

Lightweight Network Enhancing High-Resolution Feature Representation for Efficient Low Dose CT Denoising.

Li J, Li Y, Qi F, Wang S, Zhang Z, Huang Z, Yu Z

pubmed logopapersJul 21 2025
Low-dose computed tomography plays a crucial role in reducing radiation exposure in clinical imaging, however, the resultant noise significantly impacts image quality and diagnostic precision. Recent transformer-based models have demonstrated strong denoising capabilities but are often constrained by high computational complexity. To overcome these limitations, we propose AMFA-Net, an adaptive multi-order feature aggregation network that provides a lightweight architecture for enhancing highresolution feature representation in low-dose CT imaging. AMFA-Net effectively integrates local and global contexts within high-resolution feature maps while learning discriminative representations through multi-order context aggregation. We introduce an agent-based self-attention crossshaped window transformer block that efficiently captures global context in high-resolution feature maps, which is subsequently fused with backbone features to preserve critical structural information. Our approach employs multiorder gated aggregation to adaptively guide the network in capturing expressive interactions that may be overlooked in fused features, thereby producing robust representations for denoised image reconstruction. Experiments on two challenging public datasets with 25% and 10% full-dose CT image quality demonstrate that our method surpasses state-of-the-art approaches in denoising performance with low computational cost, highlighting its potential for realtime medical applications.
Page 80 of 3203198 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.