Sort by:
Page 76 of 2232230 results

Integrating handheld ultrasound in rheumatology: A review of benefits and drawbacks.

Sabido-Sauri R, Eder L, Emery P, Aydin SZ

pubmed logopapersJun 25 2025
Musculoskeletal ultrasound is a key tool in rheumatology for diagnosing and managing inflammatory arthritis. Traditional ultrasound systems, while effective, can be cumbersome and costly, limiting their use in many clinical settings. Handheld ultrasound (HHUS) devices, which are portable, affordable, and user-friendly, have emerged as a promising alternative. This review explores the role of HHUS in rheumatology, specifically evaluating its impact on diagnostic accuracy, ease of use, and utility in screening for inflammatory arthritis. The review also addresses key challenges, such as image quality, storage and data security, and the potential for integrating artificial intelligence to improve device performance. We compare HHUS devices to cart-based ultrasound machines, discuss their advantages and limitations, and examine the potential for widespread adoption. Our findings suggest that HHUS devices can effectively support musculoskeletal assessments and offer significant benefits in resource-limited settings. However, proper training, standardized protocols, and continued technological advancements are essential for optimizing their use in clinical practice.

Diagnostic Performance of Radiomics for Differentiating Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

Wang D, Sun L

pubmed logopapersJun 25 2025
Differentiating intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) is essential for selecting the most effective treatment strategies. However, traditional imaging modalities and serum biomarkers often lack sufficient specificity. Radiomics, a sophisticated image analysis approach that derives quantitative data from medical imaging, has emerged as a promising non-invasive tool. To systematically review and meta-analyze the radiomics diagnostic accuracy in differentiating ICC from HCC. PubMed, EMBASE, and Web of Science databases were systematically searched through January 24, 2025. Studies evaluating radiomics models for distinguishing ICC from HCC were included. Assessing the quality of included studies was done by using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and METhodological RadiomICs Score tools. Pooled sensitivity, specificity, and area under the curve (AUC) were calculated using a bivariate random-effects model. Subgroup and publication bias analyses were also performed. 12 studies with 2541 patients were included, with 14 validation cohorts entered into meta-analysis. The pooled sensitivity and specificity of radiomics models were 0.82 (95% CI: 0.76-0.86) and 0.90 (95% CI: 0.85-0.93), respectively, with an AUC of 0.88 (95% CI: 0.85-0.91). Subgroup analyses revealed variations based on segmentation method, software used, and sample size, though not all differences were statistically significant. Publication bias was not detected. Radiomics demonstrates high diagnostic accuracy in distinguishing ICC from HCC and offers a non-invasive adjunct to conventional diagnostics. Further prospective, multicenter studies with standardized workflows are needed to enhance clinical applicability and reproducibility.

Framework for enhanced respiratory disease identification with clinical handcrafted features.

Khokan MIP, Tonni TJ, Rony MAH, Fatema K, Hasan MZ

pubmed logopapersJun 25 2025
Respiratory disorders cause approximately 4 million deaths annually worldwide, making them the third leading cause of mortality. Early detection is critical to improving survival rates and recovery outcomes. However, chest X-rays require expertise, and computational intelligence provides valuable support to improve diagnostic accuracy and support medical professionals in decision-making. This study presents an automated system to classify respiratory diseases using three diverse datasets comprising 18,000 chest X-ray images and masks, categorized into six classes. Image preprocessing techniques, such as resizing for input standardization and CLAHE for contrast enhancement, were applied to ensure uniformity and improve the visual quality of the images. Albumentations-based augmentation methods addressed class imbalances, while bitwise segmentation focused on extracting the region of interest (ROI). Furthermore, clinically handcrafted feature extraction enabled the accurate identification of 20 critical clinical features essential for disease classification. The K-nearest neighbors (KNN) graph construction technique was utilized to transform tabular data into graph structures for effective node classification. We employed feature analysis to identify critical attributes that contribute to class predictions within the graph structure. Additionally, the GNNExplainer was utilized to validate these findings by highlighting significant nodes, edges, and features that influence the model's decision-making process. The proposed model, Chest X-ray Graph Neural Network (CHXGNN), a robust Graph Neural Network (GNN) architecture, incorporates advanced layers, batch normalization, dropout regularization, and optimization strategies. Extensive testing and ablation studies demonstrated the model's exceptional performance, achieving an accuracy of 99.56 %. Our CHXGNN model shows significant potential in detecting and classifying respiratory diseases, promising to enhance diagnostic efficiency and improve patient outcomes in respiratory healthcare.

Deep learning-based diffusion MRI tractography: Integrating spatial and anatomical information.

Yang Y, Yuan Y, Ren B, Wu Y, Feng Y, Zhang X

pubmed logopapersJun 25 2025
Diffusion MRI tractography technique enables non-invasive visualization of the white matter pathways in the brain. It plays a crucial role in neuroscience and clinical fields by facilitating the study of brain connectivity and neurological disorders. However, the accuracy of reconstructed tractograms has been a longstanding challenge. Recently, deep learning methods have been applied to improve tractograms for better white matter coverage, but often comes at the expense of generating excessive false-positive connections. This is largely due to their reliance on local information to predict long-range streamlines. To improve the accuracy of streamline propagation predictions, we introduce a novel deep learning framework that integrates image-domain spatial information and anatomical information along tracts, with the former extracted through convolutional layers and the latter modeled via a Transformer-decoder. Additionally, we employ a weighted loss function to address fiber class imbalance encountered during training. We evaluate the proposed method on the simulated ISMRM 2015 Tractography Challenge dataset, achieving a valid streamline rate of 66.2 %, white matter coverage of 63.8 %, and successfully reconstructing 24 out of 25 bundles. Furthermore, on the multi-site Tractoinferno dataset, the proposed method demonstrates its ability to handle various diffusion MRI acquisition schemes, achieving a 5.7 % increase in white matter coverage and a 4.1 % decrease in overreach compared to RNN-based methods.

How well do multimodal LLMs interpret CT scans? An auto-evaluation framework for analyses.

Zhu Q, Hou B, Mathai TS, Mukherjee P, Jin Q, Chen X, Wang Z, Cheng R, Summers RM, Lu Z

pubmed logopapersJun 25 2025
This study introduces a novel evaluation framework, GPTRadScore, to systematically assess the performance of multimodal large language models (MLLMs) in generating clinically accurate findings from CT imaging. Specifically, GPTRadScore leverages LLMs as an evaluation metric, aiming to provide a more accurate and clinically informed assessment than traditional language-specific methods. Using this framework, we evaluate the capability of several MLLMs, including GPT-4 with Vision (GPT-4V), Gemini Pro Vision, LLaVA-Med, and RadFM, to interpret findings in CT scans. This retrospective study leverages a subset of the public DeepLesion dataset to evaluate the performance of several multimodal LLMs in describing findings in CT slices. GPTRadScore was developed to assess the generated descriptions (location, body part, and type) using GPT-4, alongside traditional metrics. RadFM was fine-tuned using a subset of the DeepLesion dataset with additional labeled examples targeting complex findings. Post fine-tuning, performance was reassessed using GPTRadScore to measure accuracy improvements. Evaluations demonstrated a high correlation of GPTRadScore with clinician assessments, with Pearson's correlation coefficients of 0.87, 0.91, 0.75, 0.90, and 0.89. These results highlight its superiority over traditional metrics, such as BLEU, METEOR, and ROUGE, and indicate that GPTRadScore can serve as a reliable evaluation metric. Using GPTRadScore, it was observed that while GPT-4V and Gemini Pro Vision outperformed other models, significant areas for improvement remain, primarily due to limitations in the datasets used for training. Fine-tuning RadFM resulted in substantial accuracy gains: location accuracy increased from 3.41% to 12.8%, body part accuracy improved from 29.12% to 53%, and type accuracy rose from 9.24% to 30%. These findings reinforce the hypothesis that fine-tuning RadFM can significantly enhance its performance. GPT-4 effectively correlates with expert assessments, validating its use as a reliable metric for evaluating multimodal LLMs in radiological diagnostics. Additionally, the results underscore the efficacy of fine-tuning approaches in improving the descriptive accuracy of LLM-generated medical imaging findings.

Ultrasound Displacement Tracking Techniques for Post-Stroke Myofascial Shear Strain Quantification.

Ashikuzzaman M, Huang J, Bonwit S, Etemadimanesh A, Ghasemi A, Debs P, Nickl R, Enslein J, Fayad LM, Raghavan P, Bell MAL

pubmed logopapersJun 24 2025
Ultrasound shear strain is a potential biomarker of myofascial dysfunction. However, the quality of estimated shear strains can be impacted by differences in ultrasound displacement tracking techniques, potentially altering clinical conclusions surrounding myofascial pain. This work assesses the reliability of four displacement estimation algorithms under a novel clinical hypothesis that the shear strain between muscles on a stroke-affected (paretic) shoulder with myofascial pain is lower than that on the non-paretic side of the same patient. After initial validation with simulations, four approaches were evaluated with in vivo data acquired from ten research participants with myofascial post-stroke shoulder pain: (1) Search is a common window-based method that determines displacements by searching for maximum normalized cross-correlations within windowed data, whereas (2) OVERWIND-Search, (3) SOUL-Search, and (4) $L1$-SOUL-Search fine-tune the Search initial estimates by optimizing cost functions comprising data and regularization terms, utilizing $L1$-norm-based first-order regularization, $L2$-norm-based first- and second-order regularization, and $L1$-norm-based first- and second-order regularization, respectively. SOUL-Search and $L1$-SOUL-Search most accurately and reliably estimate shear strain relative to our clinical hypothesis, when validated with visual inspection of ultrasound cine loops and quantitative T1$\rho$ magnetic resonance imaging. In addition, $L1$-SOUL-Search produced the most reliable displacement tracking performance by generating lateral displacement images with smooth displacement gradients (measured as the mean and variance of displacement derivatives) and sharp edges (which enables distinction of shoulder muscle layers). Among the four investigated methods, $L1$-SOUL-Search emerged as the most suitable option to investigate myofascial pain and dysfunction, despite the drawback of slow runtimes, which can potentially be resolved with a deep learning solution. This work advances musculoskeletal health, ultrasound shear strain imaging, and related applications by establishing the foundation required to develop reliable image-based biomarkers for accurate diagnoses and treatments.

[Practical artificial intelligence for urology : Technical principles, current application and future implementation of AI in practice].

Rodler S, Hügelmann K, von Knobloch HC, Weiss ML, Buck L, Kohler J, Fabian A, Jarczyk J, Nuhn P

pubmed logopapersJun 24 2025
Artificial intelligence (AI) is a disruptive technology that is currently finding widespread application after having long been confined to the domain of specialists. In urology, in particular, new fields of application are continuously emerging, which are being studied both in preclinical basic research and in clinical applications. Potential applications include image recognition in the operating room or interpreting images from radiology and pathology, the automatic measurement of urinary stones and radiotherapy. Certain medical devices, particularly in the field of AI-based predictive biomarkers, have already been incorporated into international guidelines. In addition, AI is playing an increasingly more important role in administrative tasks and is expected to lead to enormous changes, especially in the outpatient sector. For urologists, it is becoming increasingly more important to engage with this technology, to pursue appropriate training and therefore to optimally implement AI into the treatment of patients and in the management of their practices or hospitals.

Refining cardiac segmentation from MRI volumes with CT labels for fine anatomy of the ascending aorta.

Oda H, Wakamori M, Akita T

pubmed logopapersJun 24 2025
Magnetic resonance imaging (MRI) is time-consuming, posing challenges in capturing clear images of moving organs, such as cardiac structures, including complex structures such as the Valsalva sinus. This study evaluates a computed tomography (CT)-guided refinement approach for cardiac segmentation from MRI volumes, focused on preserving the detailed shape of the Valsalva sinus. Owing to the low spatial contrast around the Valsalva sinus in MRI, labels from separate computed tomography (CT) volumes are used to refine the segmentation. Deep learning techniques are employed to obtain initial segmentation from MRI volumes, followed by the detection of the ascending aorta's proximal point. This detected proximal point is then used to select the most similar label from CT volumes of other patients. Non-rigid registration is further applied to refine the segmentation. Experiments conducted on 20 MRI volumes with labels from 20 CT volumes exhibited a slight decrease in quantitative segmentation accuracy. The CT-guided method demonstrated the precision (0.908), recall (0.746), and Dice score (0.804) for the ascending aorta compared with those obtained by nnU-Net alone (0.903, 0.770, and 0.816, respectively). Although some outputs showed bulge-like structures near the Valsalva sinus, an improvement in quantitative segmentation accuracy could not be validated.

Machine learning-based construction and validation of an radiomics model for predicting ISUP grading in prostate cancer: a multicenter radiomics study based on [68Ga]Ga-PSMA PET/CT.

Zhang H, Jiang X, Yang G, Tang Y, Qi L, Chen M, Hu S, Gao X, Zhang M, Chen S, Cai Y

pubmed logopapersJun 24 2025
The International Society of Urological Pathology (ISUP) grading of prostate cancer (PCa) is a crucial factor in the management and treatment planning for PCa patients. An accurate and non-invasive assessment of the ISUP grading group could significantly improve biopsy decisions and treatment planning. The use of PSMA-PET/CT radiomics for predicting ISUP has not been widely studied. The aim of this study is to investigate the role of <sup>68</sup>Ga-PSMA PET/CT radiomics in predicting the ISUP grading of primary PCa. This study included 415 PCa patients who underwent <sup>68</sup>Ga-PSMA PET/CT scans before prostate biopsy or radical prostatectomy. Patients were from three centers: Xiangya Hospital, Central South University (252 cases), Qilu Hospital of Shandong University (External Validation 1, 108 cases), and Qingdao University Medical College (External Validation 2, 55 cases). Xiangya Hospital cases were split into training and testing groups (1:1 ratio), with the other centers serving as external validation groups. Feature selection was performed using Minimum Redundancy Maximum Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms. Eight machine learning classifiers were trained and tested with ten-fold cross-validation. Sensitivity, specificity, and AUC were calculated for each model. Additionally, we combined the radiomic features with maximum Standardized Uptake Value (SUVmax) and prostate-specific antigen (PSA) to create prediction models and tested the corresponding performances. The best-performing model in the Xiangya Hospital training cohort achieved an AUC of 0.868 (sensitivity 72.7%, specificity 96.0%). Similar trends were seen in the testing cohort and external validation centers (AUCs: 0.860, 0.827, and 0.812). After incorporating PSA and SUVmax, a more robust model was developed, achieving an AUC of 0.892 (sensitivity 77.9%, specificity 96.0%) in the training group. This study established and validated a radiomics model based on <sup>68</sup>Ga-PSMA PET/CT, offering an accurate, non-invasive method for predicting ISUP grades in prostate cancer. A multicenter design with external validation ensured the model's robustness and broad applicability. This is the largest study to date on PSMA radiomics for predicting ISUP grades. Notably, integrating SUVmax and PSA metrics with radiomic features significantly improved prediction accuracy, providing new insights and tools for personalized diagnosis and treatment.

Bedside Ultrasound Vector Doppler Imaging System with GPU Processing and Deep Learning.

Nahas H, Yiu BYS, Chee AJY, Ishii T, Yu ACH

pubmed logopapersJun 24 2025
Recent innovations in vector flow imaging promise to bring the modality closer to clinical application and allow for more comprehensive high-frame-rate vascular assessments. One such innovation is plane-wave multi-angle vector Doppler, where pulsed Doppler principles from multiple steering angles are used to realize vector flow imaging at frame rates upward of 1,000 frames per second (fps). Currently, vector Doppler is limited by the presence of aliasing artifacts that have prevented its reliable realization at the bedside. In this work, we present a new aliasing-resistant vector Doppler imaging system that can be deployed at the bedside using a programmable ultrasound core, graphics processing unit (GPU) processing, and deep learning principles. The framework supports two operational modes: 1) live imaging at 17 fps where vector flow imaging serves to guide image view navigation in blood vessels with complex dynamics; 2) on-demand replay mode where flow data acquired at high frame rates of over 1,000 fps is depicted as a slow-motion playback at 60 fps using an aliasing-resistant vector projectile visualization. Using our new system, aliasing-free vector flow cineloops were successfully obtained in a stenosis phantom experiment and in human bifurcation imaging scans. This system represents a major engineering advance towards the clinical adoption of vector flow imaging.
Page 76 of 2232230 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.