Sort by:
Page 57 of 3143137 results

Ultrasound derived deep learning features for predicting axillary lymph node metastasis in breast cancer using graph convolutional networks in a multicenter study.

Agyekum EA, Kong W, Agyekum DN, Issaka E, Wang X, Ren YZ, Tan G, Jiang X, Shen X, Qian X

pubmed logopapersJul 30 2025
The purpose of this study was to create and validate an ultrasound-based graph convolutional network (US-based GCN) model for the prediction of axillary lymph node metastasis (ALNM) in patients with breast cancer. A total of 820 eligible patients with breast cancer who underwent preoperative breast ultrasonography (US) between April 2016 and June 2022 were retrospectively enrolled. The training cohort consisted of 621 patients, whereas validation cohort 1 included 112 patients, and validation cohort 2 included 87 patients. A US-based GCN model was built using US deep learning features. In validation cohort 1, the US-based GCN model performed satisfactorily, with an AUC of 0.88 and an accuracy of 0.76. In validation cohort 2, the US-based GCN model performed satisfactorily, with an AUC of 0.84 and an accuracy of 0.75. This approach has the potential to help guide optimal ALNM management in breast cancer patients, particularly by preventing overtreatment. In conclusion, we developed a US-based GCN model to assess the ALN status of breast cancer patients prior to surgery. The US-based GCN model can provide a possible noninvasive method for detecting ALNM and aid in clinical decision-making. High-level evidence for clinical use in later studies is anticipated to be obtained through prospective studies.

AI-Assisted Detection of Amyloid-related Imaging Abnormalities (ARIA): Promise and Pitfalls.

Petrella JR, Liu AJ, Wang LA, Doraiswamy PM

pubmed logopapersJul 30 2025
The advent of anti-amyloid therapies (AATs) for Alzheimer's disease (AD) has elevated the importance of MRI surveillance for amyloidrelated imaging abnormalities (ARIA) such as microhemorrhages and siderosis (ARIA-H) and edema (ARIA-E). We report a literature review and early quality assurance experience with an FDA-cleared assistive AI tool intended for detection of ARIA in MRI clinical workflows. The AI system improved sensitivity for detection of subtle ARIA-E and ARIA-H lesions but at the cost of a reduction in specificity. We propose a tiered workflow combining protocol harmonization and expert interpretation with AI overlay review. AI-assisted ARIA detection is a paradigm shift that offers great promise to enhance patient safety as disease-modifying therapies for AD gain broader clinical use; however, some pitfalls need to be considered.ABBREVIATIONS: AAT= anti-amyloid therapy; ARIA= amyloid-related imaging abnormalities, ARIA-H = amyloid-related imaging abnormality-hemorrhage, ARIA-E = amyloid-related imaging abnormality-edema.

Risk inventory and mitigation actions for AI in medical imaging-a qualitative study of implementing standalone AI for screening mammography.

Gerigoorian A, Kloub M, Dembrower K, Engwall M, Strand F

pubmed logopapersJul 30 2025
Recent prospective studies have shown that AI may be integrated in double-reader settings to increase cancer detection. The ScreenTrustCAD study was conducted at the breast radiology department at the Capio S:t Göran Hospital where AI is now implemented in clinical practice. This study reports on how the hospital prepared by exploring risks from an enterprise risk management perspective, i.e., applying a holistic and proactive perspective, and developed risk mitigation actions. The study was conducted as an integral part of the preparations before implementing AI in a breast imaging department. Collaborative ideation sessions were conducted with personnel at the hospital, either directly or indirectly involved with AI, to identify risks. Two external experts with competencies in cybersecurity, machine learning, and the ethical aspects of AI, were interviewed as a complement. The risks identified were analyzed according to an Enterprise Risk Management framework, adopted for healthcare, that assumes risks to be emerging from eight different domains. Finally, appropriate risk mitigation actions were identified and discussed. Twenty-three risks were identified covering seven of eight risk domains, in turn generating 51 suggested risk mitigation actions. Not only does the study indicate the emergence of patient safety risks, but it also shows that there are operational, strategic, financial, human capital, legal, and technological risks. The risks with most suggested mitigation actions were ‘Radiographers unable to answer difficult questions from patients’, ‘Increased risk that patient-reported symptoms are missed by the single radiologist’, ‘Increased pressure on the single reader knowing they are the only radiologist to catch a mistake by AI’, and ‘The performance of the AI algorithm might deteriorate’. Before a clinical integration of AI, hospitals should expand, identify, and address risks beyond immediate patient safety by applying comprehensive and proactive risk management. The online version contains supplementary material available at 10.1186/s12913-025-13176-9.

Deep learning-driven brain tumor classification and segmentation using non-contrast MRI.

Lu NH, Huang YH, Liu KY, Chen TB

pubmed logopapersJul 30 2025
This study aims to enhance the accuracy and efficiency of MRI-based brain tumor diagnosis by leveraging deep learning (DL) techniques applied to multichannel MRI inputs. MRI data were collected from 203 subjects, including 100 normal cases and 103 cases with 13 distinct brain tumor types. Non-contrast T1-weighted (T1w) and T2-weighted (T2w) images were combined with their average to form RGB three-channel inputs, enriching the representation for model training. Several convolutional neural network (CNN) architectures were evaluated for tumor classification, while fully convolutional networks (FCNs) were employed for tumor segmentation. Standard preprocessing, normalization, and training procedures were rigorously followed. The RGB fusion of T1w, T2w, and their average significantly enhanced model performance. The classification task achieved a top accuracy of 98.3% using the Darknet53 model, and segmentation attained a mean Dice score of 0.937 with ResNet50. These results demonstrate the effectiveness of multichannel input fusion and model selection in improving brain tumor analysis. While not yet integrated into clinical workflows, this approach holds promise for future development of DL-assisted decision-support tools in radiological practice.

Validating an explainable radiomics approach in non-small cell lung cancer combining high energy physics with clinical and biological analyses.

Monteleone M, Camagni F, Percio S, Morelli L, Baroni G, Gennai S, Govoni P, Paganelli C

pubmed logopapersJul 30 2025
This study aims at establishing a validation framework for an explainable radiomics-based model, specifically targeting classification of histopathological subtypes in non-small cell lung cancer (NSCLC) patients. We developed an explainable radiomics pipeline using open-access CT images from the cancer imaging archive (TCIA). Our approach incorporates three key prongs: SHAP-based feature selection for explainability within the radiomics pipeline, a technical validation of the explainable technique using high energy physics (HEP) data, and a biological validation using RNA-sequencing data and clinical observations. Our radiomic model achieved an accuracy of 0.84 in the classification of the histological subtype. The technical validation performed on the HEP domain over 150 numerically equivalent datasets, maintaining consistent sample size and class imbalance, confirmed the reliability of SHAP-based input features. Biological analysis found significant correlations between gene expression and CT-based radiomic features. In particular, gene MUC21 achieved the highest correlation with the radiomic feature describing the10th percentile of voxel intensities (r = 0.46, p < 0.05). This study presents a validation framework for explainable CT-based radiomics in lung cancer, combining HEP-driven technical validation with biological validation to enhance interpretability, reliability, and clinical relevance of XAI models.

Efficacy of image similarity as a metric for augmenting small dataset retinal image segmentation.

Wallace T, Heng IS, Subasic S, Messenger C

pubmed logopapersJul 30 2025
Synthetic images are an option for augmenting limited medical imaging datasets to improve the performance of various machine learning models. A common metric for evaluating synthetic image quality is the Fréchet Inception Distance (FID) which measures the similarity of two image datasets. In this study we evaluate the relationship between this metric and the improvement which synthetic images, generated by a Progressively Growing Generative Adversarial Network (PGGAN), grant when augmenting Diabetes-related Macular Edema (DME) intraretinal fluid segmentation performed by a U-Net model with limited amounts of training data. We find that the behaviour of augmenting with standard and synthetic images agrees with previously conducted experiments. Additionally, we show that dissimilar (high FID) datasets do not improve segmentation significantly. As FID between the training and augmenting datasets decreases, the augmentation datasets are shown to contribute to significant and robust improvements in image segmentation. Finally, we find that there is significant evidence to suggest that synthetic and standard augmentations follow separate log-normal trends between FID and improvements in model performance, with synthetic data proving more effective than standard augmentation techniques. Our findings show that more similar datasets (lower FID) will be more effective at improving U-Net performance, however, the results also suggest that this improvement may only occur when images are sufficiently dissimilar.

Deep Learning for the Diagnosis and Treatment of Thyroid Cancer: A Review.

Gao R, Mai S, Wang S, Hu W, Chang Z, Wu G, Guan H

pubmed logopapersJul 30 2025
In recent years, the application of deep learning (DL) technology in the thyroid field has shown exponential growth, greatly promoting innovation in thyroid disease research. As the most common malignant tumor of the endocrine system, the precise diagnosis and treatment of thyroid cancer has been a key focus of clinical research. This article systematically reviews the latest research progress in DL research for the diagnosis and treatment of thyroid malignancies, focusing on the breakthrough application of advanced models such as convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and generative adversarial networks (GANs) in key areas such as ultrasound images analysis for thyroid nodules, automatic classification of pathological images, and assessment of extrathyroidal extension. Furthermore, the review highlights the great potential of DL techniques in the development of individualized treatment planning and prognosis prediction. In addition, it analyzes the technical bottlenecks and clinical challenges faced by current DL applications in thyroid cancer diagnosis and treatment and looks ahead to future directions for development. The aim of this review is to provide the latest research insights for clinical practitioners, promote further improvements in the precision diagnosis and treatment system for thyroid cancer, and ultimately achieve better diagnostic and therapeutic outcomes for thyroid cancer patients.

A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.

Xie H, Gan W, Ji W, Chen X, Alashi A, Thorn SL, Zhou B, Liu Q, Xia M, Guo X, Liu YH, An H, Kamilov US, Wang G, Sinusas AJ, Liu C

pubmed logopapersJul 30 2025
Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, limiting realistic applicability. This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning. Using both image and projection data, a consistency strategy is proposed to ensure that diffusion sampling at each step aligns with the low-dose/few-view projection measurements, the image data, and the scanner geometry, thus enabling generalization to different low-dose/few-view settings. Incorporating anatomical spatial information from CT and total variation constraint, we proposed a 2.5D conditional strategy to allow DiffSPECT-3D to observe 3D contextual information from the entire image volume, addressing the 3D memory/computational issues in diffusion model. We extensively evaluated the proposed method on 1,325 clinical <sup>99m</sup>Tc tetrofosmin stress/rest studies from 795 patients. Each study was reconstructed into 5 different low-count levels and 5 different projection few-view levels for model evaluations, ranging from 1% to 50% and from 1 view to 9 view, respectively. Validated against cardiac catheterization results and diagnostic review from nuclear cardiologists, the presented results show the potential to achieve low-dose and few-view SPECT imaging without compromising clinical performance. Additionally, DiffSPECT-3D could be directly applied to full-dose SPECT images to further improve image quality, especially in a low-dose stress-first cardiac SPECT imaging protocol.

Automated Brain Tumor Segmentation using Hybrid YOLO and SAM.

M PJ, M SK

pubmed logopapersJul 30 2025
Early-stage Brain tumor detection is critical for timely diagnosis and effective treatment. We propose a hybrid deep learning method, Convolutional Neural Network (CNN) integrated with YOLO (You Only Look once) and SAM (Segment Anything Model) for diagnosing tumors. A novel hybrid deep learning framework combining a CNN with YOLOv11 for real-time object detection and the SAM for precise segmentation. Enhancing the CNN backbone with deeper convolutional layers to enable robust feature extraction, while YOLOv11 localizes tumor regions, SAM is used to refine the tumor boundaries through detailed mask generation. A dataset of 896 MRI brain images is used for training, testing, and validating the model, including images of both tumors and healthy brains. Additionally, CNN-based YOLO+SAM methods were utilized successfully to segment and diagnose brain tumors. Our suggested model achieves good performance of Precision as 94.2%, Recall as 95.6% and mAP50(B) score as 96.5% demonstrating and highlighting the effectiveness of the proposed approach for early-stage brain tumor diagnosis Conclusion: The validation is demonstrated through a comprehensive ablation study. The robustness of the system makes it more suitable for clinical deployment.

Advancing Alzheimer's Diagnosis with AI-Enhanced MRI: A Review of Challenges and Implications.

Batool Z, Hu S, Kamal MA, Greig NH, Shen B

pubmed logopapersJul 30 2025
Neurological disorders are marked by neurodegeneration, leading to impaired cognition, psychosis, and mood alterations. These symptoms are typically associated with functional changes in both emotional and cognitive processes, which are often correlated with anatomical variations in the brain. Hence, brain structural magnetic resonance imaging (MRI) data have become a critical focus in research, particularly for predictive modeling. The involvement of large MRI data consortia, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), has facilitated numerous MRI-based classification studies utilizing advanced artificial intelligence models. Among these, convolutional neural networks (CNNs) and non-convolutional artificial neural networks (NC-ANNs) have been prominently employed for brain image processing tasks. These deep learning models have shown significant promise in enhancing the predictive performance for the diagnosis of neurological disorders, with a particular emphasis on Alzheimer's disease (AD). This review aimed to provide a comprehensive summary of these deep learning studies, critically evaluating their methodologies and outcomes. By categorizing the studies into various sub-fields, we aimed to highlight the strengths and limitations of using MRI-based deep learning approaches for diagnosing brain disorders. Furthermore, we discussed the potential implications of these advancements in clinical practice, considering the challenges and future directions for improving diagnostic accuracy and patient outcomes. Through this detailed analysis, we seek to contribute to the ongoing efforts in harnessing AI for better understanding and management of AD.
Page 57 of 3143137 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.