Sort by:
Page 53 of 2172161 results

Multi-modal and Multi-view Cervical Spondylosis Imaging Dataset.

Yu QS, Shan JY, Ma J, Gao G, Tao BZ, Qiao GY, Zhang JN, Wang T, Zhao YF, Qin XL, Yin YH

pubmed logopapersJul 1 2025
Multi-modal and multi-view imaging is essential for diagnosis and assessment of cervical spondylosis. Deep learning has increasingly been developed to assist in diagnosis and assessment, which can help improve clinical management and provide new ideas for clinical research. To support the development and testing of deep learning models for cervical spondylosis, we have publicly shared a multi-modal and multi-view imaging dataset of cervical spondylosis, named MMCSD. This dataset comprises MRI and CT images from 250 patients. It includes axial bone and soft tissue window CT scans, sagittal T1-weighted and T2-weighted MRI, as well as axial T2-weighted MRI. Neck pain is one of the most common symptoms of cervical spondylosis. We use the MMCSD to develop a deep learning model for predicting postoperative neck pain in patients with cervical spondylosis, thereby validating its usability. We hope that the MMCSD will contribute to the advancement of neural network models for cervical spondylosis and neck pain, further optimizing clinical diagnostic assessments and treatment decision-making for these conditions.

Deep learning model for grading carcinoma with Gini-based feature selection and linear production-inspired feature fusion.

Kundu S, Mukhopadhyay S, Talukdar R, Kaplun D, Voznesensky A, Sarkar R

pubmed logopapersJul 1 2025
The most common types of kidneys and liver cancer are renal cell carcinoma (RCC) and hepatic cell carcinoma (HCC), respectively. Accurate grading of these carcinomas is essential for determining the most appropriate treatment strategies, including surgery or pharmacological interventions. Traditional deep learning methods often struggle with the intricate and complex patterns seen in histopathology images of RCC and HCC, leading to inaccuracies in classification. To enhance the grading accuracy for liver and renal cell carcinoma, this research introduces a novel feature selection and fusion framework inspired by economic theories, incorporating attention mechanisms into three Convolutional Neural Network (CNN) architectures-MobileNetV2, DenseNet121, and InceptionV3-as foundational models. The attention mechanisms dynamically identify crucial image regions, leveraging each CNN's unique strengths. Additionally, a Gini-based feature selection method is implemented to prioritize the most discriminative features, and the extracted features from each network are optimally combined using a fusion technique modeled after a linear production function, maximizing each model's contribution to the final prediction. Experimental evaluations demonstrate that this proposed approach outperforms existing state-of-the-art models, achieving high accuracies of 93.04% for RCC and 98.24% for LCC. This underscores the method's robustness and effectiveness in accurately grading these types of cancers. The code of our method is publicly available in https://github.com/GHOSTCALL983/GRADE-CLASSIFICATION .

Developments in MRI radiomics research for vascular cognitive impairment.

Chen X, Luo X, Chen L, Liu H, Yin X, Chen Z

pubmed logopapersJul 1 2025
Vascular cognitive impairment (VCI) is an umbrella term for diseases associated with cognitive decline induced by substantive brain damage following pathological changes in the cerebrovascular system. The primary clinical manifestations include behavioral abnormalities and diminished learning and memory cognitive functions. If the location and extent of brain injury are not identified early and therapeutic interventions are not promptly administered, it may lead to irreversible cognitive impairment. Therefore, the early diagnosis of VCI is crucial for its prevention and treatment. Prior to the onset of cognitive impairment in VCI, magnetic resonance imaging (MRI) radiomics can be utilized for early assessment and diagnosis, thereby guiding clinicians in providing precise treatment for patients, which holds significant potential for development. This article reviews the classification of VCI, the concept of radiomics, the application of MRI radiomics in VCI, and the limitations of radiomics in the context of advancements in its application within the central nervous system. CRITICAL RELEVANCE STATEMENT: This article explores how MRI radiomics can be used to detect VCI early, enhancing clinical radiology practice by offering a reliable method for prediction, diagnosis, and identification, which also promotes standardization in research and integration of disciplines. KEY POINTS: MRI radiomics can predict VCI early. MRI radiomics can diagnose VCI. MRI radiomics distinguishes VCI from Alzheimer's disease.

FPGA implementation of deep learning architecture for ankylosing spondylitis detection from MRI.

Kocaoğlu S

pubmed logopapersJul 1 2025
Ankylosing Spondylitis (AS), commonly known as Bechterew's disease, is a complex, potentially disabling disease that develops slowly over time and progresses to radiographic sacroiliitis. The etiology of this disease is poorly understood, making it difficult to diagnose. Therefore, treatment is also delayed. This study aims to diagnose AS with an automated system that classifies axial magnetic resonance imaging (MRI) sequences of AS patients. Recently, the application of deep learning neural networks (DLNNs) for MRI classification has become widespread. The implementation of this process on computer-independent end devices is advantageous due to its high computational power and low latency requirements. In this research, an MRI dataset containing images from 527 individuals was used. A deep learning architecture on a Field Programmable Gate Array (FPGA) card was implemented and analyzed. The results show that the classification performed on FPGA in AS diagnosis yields successful results close to the classification performed on CPU.

Knowledge mapping of ultrasound technology and triple-negative breast cancer: a visual and bibliometric analysis.

Wan Y, Shen Y, Wang J, Zhang T, Fu X

pubmed logopapersJul 1 2025
This study aims to explore the application of ultrasound technology in triple-negative breast cancer (TNBC) using bibliometric methods. It presents a visual knowledge map to exhibit global research dynamics and elucidates the research directions, hotspots, trends, and frontiers in this field. The Web of Science Core Collection database was used, and CiteSpace and VOSviewer software were employed to visualize the annual publication volume, collaborative networks (including countries, institutions, and authors), citation characteristics (such as references, co-citations, and publications), as well as keywords (including emergence and clustering) related to ultrasound applications in TNBC over the past 15 years. A total of 310 papers were included. The first paper was published in 2010, and after that, publications in this field really took off, especially after 2020. China emerged as the leading country in terms of publication volume, while Shanghai Jiao Tong University had the highest output among institutions. Memorial Sloan Kettering Cancer Center was recognized as a key research institution within this domain. Adrada BE was the most prolific author in terms of publication count. Ko Es held the highest citation frequency among authors. Co-occurrence analysis of keywords revealed that the top three keywords by frequency were "triple-negative breast cancer," "breast cancer," and "sonography." The timeline visualization indicated a strong temporal continuity in the clusters of "breast cancer," "recommendations," "biopsy," "estrogen receptor," and "radiomics." The keyword with the highest emergence value was "neoplasms" (6.80). Trend analysis of emerging terms indicated a growing focus on "machine learning approaches," "prognosis," and "molecular subtypes," with "machine learning approach" emerging as a significant keyword currently. This study provided a systematic analysis of the current state of ultrasound technology applications in TNBC. It highlighted that "machine learning methods" have emerged as a central focus and frontier in this research area, both presently and for the foreseeable future. The findings offer valuable theoretical insights for the application of ultrasound technology in TNBC diagnosis and treatment and establish a solid foundation for further advancements in medical imaging research related to TNBC.

Lung cancer screening with low-dose CT: definition of positive, indeterminate, and negative screen results. A nodule management recommendation from the European Society of Thoracic Imaging.

Snoeckx A, Silva M, Prosch H, Biederer J, Frauenfelder T, Gleeson F, Jacobs C, Kauczor HU, Parkar AP, Schaefer-Prokop C, Prokop M, Revel MP

pubmed logopapersJul 1 2025
Early detection of lung cancer through low-dose CT lung cancer screening in a high-risk population has proven to reduce lung cancer-specific mortality. Nodule management plays a pivotal role in early detection and further diagnostic approaches. The European Society of Thoracic Imaging (ESTI) has established a nodule management recommendation to improve the handling of pulmonary nodules detected during screening. For solid nodules, the primary method for assessing the likelihood of malignancy is to monitor nodule growth using volumetry software. For subsolid nodules, the aggressiveness is determined by measuring the solid part. The ESTI-recommendation enhances existing protocols but puts a stronger focus on lesion aggressiveness. The main goals are to minimise the overall number of follow-up examinations while preventing the risk of a major stage shift and reducing the risk of overtreatment. KEY POINTS: Question Assessment of nodule growth and management according to guidelines is essential in lung cancer screening. Findings Assessment of nodule aggressiveness defines follow-up in lung cancer screening. Clinical relevance The ESTI nodule management recommendation aims to reduce follow-up examinations while preventing major stage shift and overtreatment.

Prediction of axillary lymph node metastasis in triple negative breast cancer using MRI radiomics and clinical features.

Shen Y, Huang R, Zhang Y, Zhu J, Li Y

pubmed logopapersJul 1 2025
To develop and validate a machine learning-based prediction model to predict axillary lymph node (ALN) metastasis in triple negative breast cancer (TNBC) patients using magnetic resonance imaging (MRI) and clinical characteristics. This retrospective study included TNBC patients from the First Affiliated Hospital of Soochow University and Jiangsu Province Hospital (2016-2023). We analyzed clinical characteristics and radiomic features from T2-weighted MRI. Using LASSO regression for feature selection, we applied Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) to build prediction models. A total of 163 patients, with a median age of 53 years (range: 24-73), were divided into a training group (n = 115) and a validation group (n = 48). Among them, 54 (33.13%) had ALN metastasis, and 109 (66.87%) were non-metastasis. Nottingham grade (P = 0.005), tumor size (P = 0.016) were significant difference between non-metastasis cases and metastasis cases. In the validation set, the LR-based combined model achieved the highest AUC (0.828, 95%CI: 0.706-0.950) with excellent sensitivity (0.813) and accuracy (0.812). Although the RF-based model had the highest AUC in the training set and the highest specificity (0.906) in the validation set, its performance was less consistent compared to the LR model. MRI-T2WI radiomic features predict ALN metastasis in TNBC, with integration into clinical models enhancing preoperative predictions and personalizing management.

Lessons learned from RadiologyNET foundation models for transfer learning in medical radiology.

Napravnik M, Hržić F, Urschler M, Miletić D, Štajduhar I

pubmed logopapersJul 1 2025
Deep learning models require large amounts of annotated data, which are hard to obtain in the medical field, as the annotation process is laborious and depends on expert knowledge. This data scarcity hinders a model's ability to generalise effectively on unseen data, and recently, foundation models pretrained on large datasets have been proposed as a promising solution. RadiologyNET is a custom medical dataset that comprises 1,902,414 medical images covering various body parts and modalities of image acquisition. We used the RadiologyNET dataset to pretrain several popular architectures (ResNet18, ResNet34, ResNet50, VGG16, EfficientNetB3, EfficientNetB4, InceptionV3, DenseNet121, MobileNetV3Small and MobileNetV3Large). We compared the performance of ImageNet and RadiologyNET foundation models against training from randomly initialiased weights on several publicly available medical datasets: (i) Segmentation-LUng Nodule Analysis Challenge, (ii) Regression-RSNA Pediatric Bone Age Challenge, (iii) Binary classification-GRAZPEDWRI-DX and COVID-19 datasets, and (iv) Multiclass classification-Brain Tumor MRI dataset. Our results indicate that RadiologyNET-pretrained models generally perform similarly to ImageNet models, with some advantages in resource-limited settings. However, ImageNet-pretrained models showed competitive performance when fine-tuned on sufficient data. The impact of modality diversity on model performance was tested, with the results varying across tasks, highlighting the importance of aligning pretraining data with downstream applications. Based on our findings, we provide guidelines for using foundation models in medical applications and publicly release our RadiologyNET-pretrained models to support further research and development in the field. The models are available at https://github.com/AIlab-RITEH/RadiologyNET-TL-models .

Anterior cruciate ligament tear detection based on Res2Net modified by improved Lévy flight distribution.

Yang P, Liu Y, Liu F, Han M, Abdi Y

pubmed logopapersJul 1 2025
Anterior Cruciate Ligament (ACL) tears are common in sports and can provide noteworthy health issues. Therefore, accurately diagnosing of tears is important for the early and proper treatment. However, traditional diagnostic methods, such as clinical assessments and MRI, have limitations in terms of accuracy and efficiency. This study introduces a new diagnostic approach by combining of the deep learning architecture Res2Net with an improved version of the Lévy flight distribution (ILFD) to improve the detection of ACL tears in knee MRI images. The Res2Net model is known for its ability to extract important features and classify them effectively. By optimizing the model using the ILFD algorithm, the diagnostic efficiency is greatly improved. For validation of the proposed model's efficiency, it has been applied into two standard datasets including Stanford University Medical Center and Clinical Hospital Centre Rijeka. Comparative analysis with existing diagnostic methods, including 14 layers ResNet-14, Compact Parallel Deep Convolutional Neural Network (CPDCNN), Convolutional Neural Network (CNN), Generative Adversarial Network (GAN), and combined CNN and Modified Golden Search Algorithm (CNN/MGSA) shows that the suggested Res2Net/ILFD model performs better in various metrics, including precision, recall, accuracy, f1-score, and specificity, and Matthews correlation coefficient.

Ultrasound-based classification of follicular thyroid Cancer using deep convolutional neural networks with transfer learning.

Agyekum EA, Yuzhi Z, Fang Y, Agyekum DN, Wang X, Issaka E, Li C, Shen X, Qian X, Wu X

pubmed logopapersJul 1 2025
This study aimed to develop and validate convolutional neural network (CNN) models for distinguishing follicular thyroid carcinoma (FTC) from follicular thyroid adenoma (FTA). Additionally, this current study compared the performance of CNN models with the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) and Chinese Thyroid Imaging Reporting and Data System (C-TIRADS) ultrasound-based malignancy risk stratification systems. A total of 327 eligible patients with FTC and FTA who underwent preoperative thyroid ultrasound examination were retrospectively enrolled between August 2017, and August 2024. Patients were randomly assigned to a training cohort (n = 263) and a test cohort (n = 64) in an 8:2 ratio using stratified sampling. Five CNN models, including VGG16, ResNet101, MobileNetV2, ResNet152, and ResNet50, pre-trained with ImageNet, were developed and tested to distinguish FTC from FTA. The CNN models exhibited good performance, yielding areas under the receiver operating characteristic curve (AUC) ranging from 0.64 to 0.77. The ResNet152 model demonstrated the highest AUC (0.77; 95% CI, 0.67-0.87) for distinguishing between FTC and FTA. Decision curve and calibration curve analyses demonstrated the models' favorable clinical value and calibration. Furthermore, when comparing the performance of the developed models with that of the C-TIRADS and ACR-TIRADS systems, the models developed in this study demonstrated superior performance. This can potentially guide appropriate management of FTC in patients with follicular neoplasms.
Page 53 of 2172161 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.