Sort by:
Page 3 of 28278 results

Artificial intelligence: a new era in prostate cancer diagnosis and treatment.

Vidiyala N, Parupathi P, Sunkishala P, Sree C, Gujja A, Kanagala P, Meduri SK, Nyavanandi D

pubmed logopapersAug 4 2025
Prostate cancer (PCa) represents one of the most prevalent cancers among men, with substantial challenges in timely and accurate diagnosis and subsequent treatment. Traditional diagnosis and treatment methods for PCa, such as prostate-specific antigen (PSA) biomarker detection, digital rectal examination, imaging (CT/MRI) analysis, and biopsy histopathological examination, suffer from limitations such as a lack of specificity, generation of false positives or negatives, and difficulty in handling large data, leading to overdiagnosis and overtreatment. The integration of artificial intelligence (AI) in PCa diagnosis and treatment is revolutionizing traditional approaches by offering advanced tools for early detection, personalized treatment planning, and patient management. AI technologies, especially machine learning and deep learning, improve diagnostic accuracy and treatment planning. The AI algorithms analyze imaging data, like MRI and ultrasound, to identify cancerous lesions effectively with great precision. In addition, AI algorithms enhance risk assessment and prognosis by combining clinical, genomic, and imaging data. This leads to more tailored treatment strategies, enabling informed decisions about active surveillance, surgery, or new therapies, thereby improving quality of life while reducing unnecessary diagnoses and treatments. This review examines current AI applications in PCa care, focusing on their transformative impact on diagnosis and treatment planning while recognizing potential challenges. It also outlines expected improvements in diagnosis through AI-integrated systems and decision support tools for healthcare teams. The findings highlight AI's potential to enhance clinical outcomes, operational efficiency, and patient-centred care in managing PCa.

Vessel-specific reliability of artificial intelligence-based coronary artery calcium scoring on non-ECG-gated chest CT: a comparative study with ECG-gated cardiac CT.

Zhang J, Liu K, You C, Gong J

pubmed logopapersAug 4 2025
To evaluate the performance of artificial intelligence (AI)-based coronary artery calcium scoring (CACS) on non-electrocardiogram (ECG)-gated chest CT, using manual quantification as the reference standard, while characterizing per-vessel reliability and clinical risk classification impacts. Retrospective study of 290 patients (June 2023-2024) with paired non-ECG-gated chest CT and ECG-gated cardiac CT (median time was 2 days). AI-based CACS and manual CACS (CACS_man) were compared using intraclass correlation coefficient (ICC) and weighted Cohen's kappa (3,1). Error types, anatomical distributions, and CACS of the lesions of individual arteries or segments were assessed in accordance with the Society of Cardiovascular Computed Tomography (SCCT) guidelines. The total CACS of chest CT demonstrated excellent concordance with CACS_man (ICC = 0.87, 95 % CI 0.84-0.90). Non-ECG-gated chest showed a 7.5-fold increased risk misclassification rate compared to ECG-gated cardiac CT (41.4 % vs. 5.5 %), with 35.5 % overclassification and 5.9 % underclassification. Vessel-specific analysis revealed paradoxical reliability of the left anterior descending artery (LAD) due to stent misclassification in four cases (ICC = 0.93 on chest CT vs 0.82 on cardiac CT), while the right coronary artery (RCA) demonstrated suboptimal performance with ICCs ranging from 0.60 to 0.68. Chest CT exhibited higher false-positive (1.9 % vs 0.5 %) and false-negative rates (14.4 % vs 4.3 %). False positive mainly derived from image noise in proximal LAD/RCA (median CACS 5.97 vs 3.45) and anatomical error, while false negatives involved RCA microcalcifications (median CACS 2.64). AI-based non-ECG-gated chest CT demonstrates utility for opportunistic screening but requires protocol optimization to address vessel-specific limitations and mitigate 41.4 % risk misclassification rates.

Diagnostic Performance of Imaging-Based Artificial Intelligence Models for Preoperative Detection of Cervical Lymph Node Metastasis in Clinically Node-Negative Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis.

Li B, Cheng G, Mo Y, Dai J, Cheng S, Gong S, Li H, Liu Y

pubmed logopapersAug 4 2025
This systematic review and meta-analysis evaluated the performance of imaging-based artificial intelligence (AI) models in diagnosing preoperative cervical lymph node metastasis (LNM) in clinically node-negative (cN0) papillary thyroid carcinoma (PTC). We conducted a literature search in PubMed, Embase, and Web of Science until February 25, 2025. Studies were selected that focused on imaging-based AI models for predicting cervical LNM in cN0 PTC. The diagnostic performance metrics were analyzed using a bivariate random-effects model, and study quality was assessed with the QUADAS-2 tool. From 671 articles, 11 studies involving 3366 patients were included. Ultrasound (US)-based AI models showed pooled sensitivity of 0.79 and specificity of 0.82, significantly higher than radiologists (p < 0.001). CT-based AI models demonstrated sensitivity of 0.78 and specificity of 0.89. Imaging-based AI models, particularly US-based AI, show promising diagnostic performance. There is a need for further multicenter prospective studies for validation. PROSPERO: (CRD420251063416).

Deep learning-driven incidental detection of vertebral fractures in cancer patients: advancing diagnostic precision and clinical management.

Mniai EM, Laletin V, Tselikas L, Assi T, Bonnet B, Camez AO, Zemmouri A, Muller S, Moussa T, Chaibi Y, Kiewsky J, Quenet S, Avare C, Lassau N, Balleyguier C, Ayobi A, Ammari S

pubmed logopapersAug 2 2025
Vertebral compression fractures (VCFs) are the most prevalent skeletal manifestations of osteoporosis in cancer patients. Yet, they are frequently missed or not reported in routine clinical radiology, adversely impacting patient outcomes and quality of life. This study evaluates the diagnostic performance of a deep-learning (DL)-based application and its potential to reduce the miss rate of incidental VCFs in a high-risk cancer population. We retrospectively analysed thoraco-abdomino-pelvic (TAP) CT scans from 1556 patients with stage IV cancer collected consecutively over a 4-month period (September-December 2023) in a tertiary cancer center. A DL-based application flagged cases positive for VCFs, which were subsequently reviewed by two expert radiologists for validation. Additionally, grade 3 fractures identified by the application were independently assessed by two expert interventional radiologists to determine their eligibility for vertebroplasty. Of the 1556 cases, 501 were flagged as positive for VCF by the application, with 436 confirmed as true positives by expert review, yielding a positive predictive value (PPV) of 87%. Common causes of false positives included sclerotic vertebral metastases, scoliosis, and vertebrae misidentification. Notably, 83.5% (364/436) of true positive VCFs were absent from radiology reports, indicating a substantial non-report rate in routine practice. Ten grade 3 fractures were overlooked or not reported by radiologists. Among them, 9 were deemed suitable for vertebroplasty by expert interventional radiologists. This study underscores the potential of DL-based applications to improve the detection of VCFs. The analyzed tool can assist radiologists in detecting more incidental vertebral fractures in adult cancer patients, optimising timely treatment and reducing associated morbidity and economic burden. Moreover, it might enhance patient access to interventional treatments such as vertebroplasty. These findings highlight the transformative role that DL can play in optimising clinical management and outcomes for osteoporosis-related VCFs in cancer patients.

AI enhanced diagnostic accuracy and workload reduction in hepatocellular carcinoma screening.

Lu RF, She CY, He DN, Cheng MQ, Wang Y, Huang H, Lin YD, Lv JY, Qin S, Liu ZZ, Lu ZR, Ke WP, Li CQ, Xiao H, Xu ZF, Liu GJ, Yang H, Ren J, Wang HB, Lu MD, Huang QH, Chen LD, Wang W, Kuang M

pubmed logopapersAug 2 2025
Hepatocellular carcinoma (HCC) ultrasound screening encounters challenges related to accuracy and the workload of radiologists. This retrospective, multicenter study assessed four artificial intelligence (AI) enhanced strategies using 21,934 liver ultrasound images from 11,960 patients to improve HCC ultrasound screening accuracy and reduce radiologist workload. UniMatch was used for lesion detection and LivNet for classification, trained on 17,913 images. Among the strategies tested, Strategy 4, which combined AI for initial detection and radiologist evaluation of negative cases in both detection and classification phases, outperformed others. It not only matched the high sensitivity of original algorithm (0.956 vs. 0.991) but also improved specificity (0.787 vs. 0.698), reduced radiologist workload by 54.5%, and decreased both recall and false positive rates. This approach demonstrates a successful model of human-AI collaboration, not only enhancing clinical outcomes but also mitigating unnecessary patient anxiety and system burden by minimizing recalls and false positives.

High-grade glioma: combined use of 5-aminolevulinic acid and intraoperative ultrasound for resection and a predictor algorithm for detection.

Aibar-Durán JÁ, Mirapeix RM, Gallardo Alcañiz A, Salgado-López L, Freixer-Palau B, Casitas Hernando V, Hernández FM, de Quintana-Schmidt C

pubmed logopapersAug 1 2025
The primary goal in neuro-oncology is the maximally safe resection of high-grade glioma (HGG). A more extensive resection improves both overall and disease-free survival, while a complication-free surgery enables better tolerance to adjuvant therapies such as chemotherapy and radiotherapy. Techniques such as 5-aminolevulinic acid (5-ALA) fluorescence and intraoperative ultrasound (ioUS) are valuable for safe resection and cost-effective. However, the benefits of combining these techniques remain undocumented. The aim of this study was to investigate outcomes when combining 5-ALA and ioUS. From January 2019 to January 2024, 72 patients (mean age 62.2 years, 62.5% male) underwent HGG resection at a single hospital. Tumor histology included glioblastoma (90.3%), grade IV astrocytoma (4.1%), grade III astrocytoma (2.8%), and grade III oligodendroglioma (2.8%). Tumor resection was performed under natural light, followed by using 5-ALA and ioUS to detect residual tumor. Biopsies from the surgical bed were analyzed for tumor presence and categorized based on 5-ALA and ioUS results. Results of 5-ALA and ioUS were classified into positive, weak/doubtful, or negative. Histological findings of the biopsies were categorized into solid tumor, infiltration, or no tumor. Sensitivity, specificity, and predictive values for both techniques, separately and combined, were calculated. A machine learning algorithm (HGGPredictor) was developed to predict tumor presence in biopsies. The overall sensitivities of 5-ALA and ioUS were 84.9% and 76%, with specificities of 57.8% and 84.5%, respectively. The combination of both methods in a positive/positive scenario yielded the highest performance, achieving a sensitivity of 91% and specificity of 86%. The positive/doubtful combination followed, with sensitivity of 67.9% and specificity of 95.2%. Area under the curve analysis indicated superior performance when both techniques were combined, in comparison to each method used individually. Additionally, the HGGPredictor tool effectively estimated the quantity of tumor cells in surgical margins. Combining 5-ALA and ioUS enhanced diagnostic accuracy for HGG resection, suggesting a new surgical standard. An intraoperative predictive algorithm could further automate decision-making.

External Validation of a Winning Artificial Intelligence Algorithm from the RSNA 2022 Cervical Spine Fracture Detection Challenge.

Harper JP, Lee GR, Pan I, Nguyen XV, Quails N, Prevedello LM

pubmed logopapersJul 31 2025
The Radiological Society of North America has actively promoted artificial intelligence (AI) challenges since 2017. Algorithms emerging from the recent RSNA 2022 Cervical Spine Fracture Detection Challenge demonstrated state-of-the-art performance in the competition's data set, surpassing results from prior publications. However, their performance in real-world clinical practice is not known. As an initial step toward the goal of assessing feasibility of these models in clinical practice, we conducted a generalizability test by using one of the leading algorithms of the competition. The deep learning algorithm was selected due to its performance, portability, and ease of use, and installed locally. One hundred examinations (50 consecutive cervical spine CT scans with at least 1 fracture present and 50 consecutive negative CT scans) from a level 1 trauma center not represented in the competition data set were processed at 6.4 seconds per examination. Ground truth was established based on the radiology report with retrospective confirmation of positive fracture cases. Sensitivity, specificity, F1 score, and area under the curve were calculated. The external validation data set comprised older patients in comparison to the competition set (53.5 ± 21.8 years versus 58 ± 22.0, respectively; <i>P</i> < .05). Sensitivity and specificity were 86% and 70% in the external validation group and 85% and 94% in the competition group, respectively. Fractures misclassified by the convolutional neural networks frequently had features of advanced degenerative disease, subtle nondisplaced fractures not easily identified on the axial plane, and malalignment. The model performed with a similar sensitivity on the test and external data set, suggesting that such a tool could be potentially generalizable as a triage tool in the emergency setting. Discordant factors such as age-associated comorbidities may affect accuracy and specificity of AI models when used in certain populations. Further research should be encouraged to help elucidate the potential contributions and pitfalls of these algorithms in supporting clinical care.

Enhanced Detection, Using Deep Learning Technology, of Medial Meniscal Posterior Horn Ramp Lesions in Patients with ACL Injury.

Park HJ, Ham S, Shim E, Suh DH, Kim JG

pubmed logopapersJul 31 2025
Meniscal ramp lesions can impact knee stability, particularly when associated with anterior cruciate ligament (ACL) injuries. Although magnetic resonance imaging (MRI) is the primary diagnostic tool, its diagnostic accuracy remains suboptimal. We aimed to determine whether deep learning technology could enhance MRI-based ramp lesion detection. We reviewed the records of 236 patients who underwent arthroscopic procedures documenting ACL injuries and the status of the medial meniscal posterior horn. A deep learning model was developed using MRI data for ramp lesion detection. Ramp lesion risk factors among patients who underwent ACL reconstruction were analyzed using logistic regression, extreme gradient boosting (XGBoost), and random forest models and were integrated into a final prediction model using Swin Transformer Large architecture. The deep learning model using MRI data demonstrated superior overall diagnostic performance to the clinicians' assessment (accuracy of 73.3% compared with 68.1%, specificity of 78.0% compared with 62.9%, and sensitivity of 64.7% compared with 76.4%). Incorporating risk factors (age, posteromedial tibial bone marrow edema, and lateral meniscal tears) improved the model's accuracy to 80.7%, with a sensitivity of 81.8% and a specificity of 80.9%. Integrating deep learning with MRI data and risk factors significantly enhanced diagnostic accuracy for ramp lesions, surpassing that of the model using MRI alone and that of clinicians. This study highlights the potential of artificial intelligence to provide clinicians with more accurate diagnostic tools for detecting ramp lesions, potentially enhancing treatment and patient outcomes. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

Impact of AI assistance on radiologist interpretation of knee MRI.

Herpe G, Vesoul T, Zille P, Pluot E, Guillin R, Rizk B, Ardon R, Adam C, d'Assignies G, Gondim Teixeira PA

pubmed logopapersJul 31 2025
Knee injuries frequently require Magnetic Resonance Imaging (MRI) evaluation, increasing radiologists' workload. This study evaluates the impact of a Knee AI assistant on radiologists' diagnostic accuracy and efficiency in detecting anterior cruciate ligament (ACL), meniscus, cartilage, and medial collateral ligament (MCL) lesions on knee MRI exams. This retrospective reader study was conducted from January 2024 to April 2024. Knee MRI studies were evaluated with and without AI assistance by six radiologists with between 2 and 10 years of experience in musculoskeletal imaging in two sessions, 1 month apart. The AI algorithm was trained on 23,074 MRI studies separate from the study dataset and tested on various knee structures, including ACL, MCL, menisci, and cartilage. The reference standard was established by the consensus of three expert MSK radiologists. Statistical analysis included sensitivity, specificity, accuracy, and Fleiss' Kappa. The study dataset involved 165 knee MRIs (89 males, 76 females; mean age, 42.3 ± 15.7 years). AI assistance improved sensitivity from 81% (134/165, 95% CI = [79.7, 83.3]) to 86%(142/165, 95% CI = [84.2, 87.5]) (p < 0.001), accuracy from 86% (142/165, 95% CI = [85.4, 86.9]) to 91%(150/165, 95% CI = [90.7, 92.1]) (p < 0.001), and specificity from 88% (145/165, 95% CI = [87.1, 88.5]) to 93% (153/165, 95% CI = [92.7, 93.8]) (p < 0.001). Sensitivity and accuracy improvements were observed across all knee structures with varied statistical significance ranging from < 0.001 to 0.28. The Fleiss' Kappa values among readers increased from 54% (95% CI = [53.0, 55.3]) to 78% (95% CI = [76.6, 79.0]) (p < 0.001) post-AI integration. The integration of AI improved diagnostic accuracy, efficiency, and inter-reader agreement in knee MRI interpretation, highlighting the value of this approach in clinical practice. Question Can artificial intelligence (AI) assistance improve the diagnostic accuracy and efficiency of radiologists in detecting main lesions anterior cruciate ligament, meniscus, cartilage, and medial collateral ligament lesions in knee MRI? Findings AI assistance in knee MRI interpretation increased radiologists' sensitivity from 81 to 86% and accuracy from 86 to 91% for detecting knee lesions while improving inter-reader agreement (p < 0.001). Clinical relevance AI-assisted knee MRI interpretation enhances diagnostic precision and consistency among radiologists, potentially leading to more accurate injury detection, improved patient outcomes, and reduced diagnostic variability in musculoskeletal imaging.

AI-Assisted Detection of Amyloid-related Imaging Abnormalities (ARIA): Promise and Pitfalls.

Petrella JR, Liu AJ, Wang LA, Doraiswamy PM

pubmed logopapersJul 30 2025
The advent of anti-amyloid therapies (AATs) for Alzheimer's disease (AD) has elevated the importance of MRI surveillance for amyloidrelated imaging abnormalities (ARIA) such as microhemorrhages and siderosis (ARIA-H) and edema (ARIA-E). We report a literature review and early quality assurance experience with an FDA-cleared assistive AI tool intended for detection of ARIA in MRI clinical workflows. The AI system improved sensitivity for detection of subtle ARIA-E and ARIA-H lesions but at the cost of a reduction in specificity. We propose a tiered workflow combining protocol harmonization and expert interpretation with AI overlay review. AI-assisted ARIA detection is a paradigm shift that offers great promise to enhance patient safety as disease-modifying therapies for AD gain broader clinical use; however, some pitfalls need to be considered.ABBREVIATIONS: AAT= anti-amyloid therapy; ARIA= amyloid-related imaging abnormalities, ARIA-H = amyloid-related imaging abnormality-hemorrhage, ARIA-E = amyloid-related imaging abnormality-edema.
Page 3 of 28278 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.