Sort by:
Page 244 of 3023020 results

Contrast-Enhanced Ultrasound for Hepatocellular Carcinoma Diagnosis-<i>AJR</i> Expert Panel Narrative Review.

Li L, Burgio MD, Fetzer DT, Ferraioli G, Lyshchik A, Meloni MF, Rafailidis V, Sidhu PS, Vilgrain V, Wilson SR, Zhou J

pubmed logopapersMay 28 2025
Despite growing clinical use of contrast-enhanced ultrasound (CEUS), inconsistency remains in the modality's role in clinical pathways for hepatocellular carcinoma (HCC) diagnosis and management. This AJR Expert Panel Narrative Review provides practical insights on the use of CEUS for the diagnosis of HCC across populations, including individuals at high risk for HCC, individuals with metabolic dysfunction-associated steatotic liver disease, and remaining individuals not at high risk for HCC. Considerations addressed with respect to high-risk patients include CEUS diagnostic criteria for HCC, use of CEUS for differentiating HCC from non-HCC malignancy, use of CEUS for small (≤2 cm) lesions, use of CEUS for characterizing occult lesions on B-mode ultrasound, and use of CEUS for indeterminate lesions on CT or MRI. Representative literature addressing the use of CEUS for HCC diagnosis as well as gaps in knowledge requiring further investigation are highlighted. Throughout these discussions, the article distinguishes two broad types of ultrasound contrast agents used for liver imaging: pure blood-pool agents and a combined blood-pool and Kupffer-cell agent. Additional topics include the use of CEUS for treatment response assessment after nonradiation therapies and implications of artificial intelligence technologies. The article concludes with a series of consensus statements from the author panel.

A vessel bifurcation landmark pair dataset for abdominal CT deformable image registration (DIR) validation.

Criscuolo ER, Zhang Z, Hao Y, Yang D

pubmed logopapersMay 28 2025
Deformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. DIRs of intra-patient abdominal CTs are among the most challenging registration scenarios due to significant organ deformations and inconsistent image content. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Abdominal CT image pairs of 30 patients were acquired from several publicly available repositories as well as the authors' institution with IRB approval. The two CTs of each pair were originally acquired for the same patient but on different days. An image processing workflow was developed and applied to each CT image pair: (1) Abdominal organs were segmented with a deep learning model, and image intensity within organ masks was overwritten. (2) Matching image patches were manually identified between two CTs of each image pair. (3) Vessel bifurcation landmarks were labeled on one image of each image patch pair. (4) Image patches were deformably registered, and landmarks were projected onto the second image. (5) Landmark pair locations were refined manually or with an automated process. This workflow resulted in 1895 total landmark pairs, or 63 per case on average. Estimates of the landmark pair accuracy using digital phantoms were 0.7 mm ± 1.2 mm. The data are published in Zenodo at https://doi.org/10.5281/zenodo.14362785. Instructions for use can be found at https://github.com/deshanyang/Abdominal-DIR-QA. This dataset is a first-of-its-kind for abdominal DIR validation. The number, accuracy, and distribution of landmark pairs will allow for robust validation of DIR algorithms with precision beyond what is currently available.

Deep learning radiomics fusion model to predict visceral pleural invasion of clinical stage IA lung adenocarcinoma: a multicenter study.

Zhao J, Wang T, Wang B, Satishkumar BM, Ding L, Sun X, Chen C

pubmed logopapersMay 28 2025
To assess the predictive performance, risk stratification capabilities, and auxiliary diagnostic utility of radiomics, deep learning, and fusion models in identifying visceral pleural invasion (VPI) in lung adenocarcinoma. A total of 449 patients (female:male, 263:186; 59.8 ± 10.5 years) diagnosed with clinical IA stage lung adenocarcinoma (LAC) from two distinct hospitals were enrolled in the study and divided into a training cohort (n = 289) and an external test cohort (n = 160). The fusion models were constructed from the feature level and the decision level respectively. A comprehensive analysis was conducted to assess the prediction ability and prognostic value of radiomics, deep learning, and fusion models. The diagnostic performance of radiologists of varying seniority with and without the assistance of the optimal model was compared. The late fusion model demonstrated superior diagnostic performance (AUC = 0.812) compared to clinical (AUC = 0.650), radiomics (AUC = 0.710), deep learning (AUC = 0.770), and the early fusion models (AUC = 0.586) in the external test cohort. The multivariate Cox regression analysis showed that the VPI status predicted by the late fusion model were independently associated with patient disease-free survival (DFS) (p = 0.044). Furthermore, model assistance significantly improved radiologist performance, particularly for junior radiologists; the AUC increased by 0.133 (p < 0.001) reaching levels comparable to the senior radiologist without model assistance (AUC: 0.745 vs. 0.730, p = 0.790). The proposed decision-level (late fusion) model significantly reducing the risk of overfitting and demonstrating excellent robustness in multicenter external validation, which can predict VPI status in LAC, aid in prognostic stratification, and assist radiologists in achieving higher diagnostic performance.

Operationalizing postmortem pathology-MRI association studies in Alzheimer's disease and related disorders with MRI-guided histology sampling.

Athalye C, Bahena A, Khandelwal P, Emrani S, Trotman W, Levorse LM, Khodakarami Z, Ohm DT, Teunissen-Bermeo E, Capp N, Sadaghiani S, Arezoumandan S, Lim SA, Prabhakaran K, Ittyerah R, Robinson JL, Schuck T, Lee EB, Tisdall MD, Das SR, Wolk DA, Irwin DJ, Yushkevich PA

pubmed logopapersMay 28 2025
Postmortem neuropathological examination, while the gold standard for diagnosing neurodegenerative diseases, often relies on limited regional sampling that may miss critical areas affected by Alzheimer's disease and related disorders. Ultra-high resolution postmortem MRI can help identify regions that fall outside the diagnostic sampling criteria for additional histopathologic evaluation. However, there are no standardized guidelines for integrating histology and MRI in a traditional brain bank. We developed a comprehensive protocol for whole hemisphere postmortem 7T MRI-guided histopathological sampling with whole-slide digital imaging and histopathological analysis, providing a reliable pipeline for high-volume brain banking in heterogeneous brain tissue. Our method uses patient-specific 3D printed molds built from postmortem MRI, allowing standardized tissue processing with a permanent spatial reference frame. To facilitate pathology-MRI association studies, we created a semi-automated MRI to histology registration pipeline and developed a quantitative pathology scoring system using weakly supervised deep learning. We validated this protocol on a cohort of 29 brains with diagnosis on the AD spectrum that revealed correlations between cortical thickness and phosphorylated tau accumulation. This pipeline has broad applicability across neuropathological research and brain banking, facilitating large-scale studies that integrate histology with neuroimaging. The innovations presented here provide a scalable and reproducible approach to studying postmortem brain pathology, with implications for advancing diagnostic and therapeutic strategies for Alzheimer's disease and related disorders.

Efficient feature extraction using light-weight CNN attention-based deep learning architectures for ultrasound fetal plane classification.

Sivasubramanian A, Sasidharan D, Sowmya V, Ravi V

pubmed logopapersMay 28 2025
Ultrasound fetal imaging is beneficial to support prenatal development because it is affordable and non-intrusive. Nevertheless, fetal plane classification (FPC) remains challenging and time-consuming for obstetricians since it depends on nuanced clinical aspects, which increases the difficulty in identifying relevant features of the fetal anatomy. Thus, to assist with its accurate feature extraction, a lightweight artificial intelligence architecture leveraging convolutional neural networks and attention mechanisms is proposed to classify the largest benchmark ultrasound dataset. The approach fine-tunes from lightweight EfficientNet feature extraction backbones pre-trained on the ImageNet1k. to classify key fetal planes such as the brain, femur, thorax, cervix, and abdomen. Our methodology incorporates the attention mechanism to refine features and 3-layer perceptrons for classification, achieving superior performance with the highest Top-1 accuracy of 96.25%, Top-2 accuracy of 99.80% and F1-Score of 0.9576. Importantly, the model has 40x fewer trainable parameters than existing benchmark ensemble or transformer pipelines, facilitating easy deployment on edge devices to help clinical practitioners with real-time FPC. The findings are also interpreted using GradCAM to carry out clinical correlation to aid doctors with diagnostics and improve treatment plans for expectant mothers.

Integrating SEResNet101 and SE-VGG19 for advanced cervical lesion detection: a step forward in precision oncology.

Ye Y, Chen Y, Pan J, Li P, Ni F, He H

pubmed logopapersMay 28 2025
Cervical cancer remains a significant global health issue, with accurate differentiation between low-grade (LSIL) and high-grade squamous intraepithelial lesions (HSIL) crucial for effective screening and management. Current methods, such as Pap smears and HPV testing, often fall short in sensitivity and specificity. Deep learning models hold the potential to enhance the accuracy of cervical cancer screening but require thorough evaluation to ascertain their practical utility. This study compares the performance of two advanced deep learning models, SEResNet101 and SE-VGG19, in classifying cervical lesions using a dataset of 3,305 high-quality colposcopy images. We assessed the models based on their accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The SEResNet101 model demonstrated superior performance over SE-VGG19 across all evaluated metrics. Specifically, SEResNet101 achieved a sensitivity of 95%, a specificity of 97%, and an AUC of 0.98, compared to 89% sensitivity, 93% specificity, and an AUC of 0.94 for SE-VGG19. These findings suggest that SEResNet101 could significantly reduce both over- and under-treatment rates by enhancing diagnostic precision. Our results indicate that SEResNet101 offers a promising enhancement over existing screening methods, integrating advanced deep learning algorithms to significantly improve the precision of cervical lesion classification. This study advocates for the inclusion of SEResNet101 in clinical workflows to enhance cervical cancer screening protocols, thereby improving patient outcomes. Future work should focus on multicentric trials to validate these findings and facilitate widespread clinical adoption.

Fully automated Bayesian analysis for quantifying the extent and distribution of pulmonary perfusion changes on CT pulmonary angiography in CTEPH.

Suchanek V, Jakubicek R, Hrdlicka J, Novak M, Miksova L, Jansa P, Burgetova A, Lambert L

pubmed logopapersMay 28 2025
This work aimed to develop an automated method for quantifying the distribution and severity of perfusion changes on CT pulmonary angiography (CTPA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and to assess their associations with clinical parameters and expert annotations. Following automated segmentation of the chest, a machine-learning model assuming three distributions of attenuation in the pulmonary parenchyma (hyperemic, normal, and oligemic) was fitted to the attenuation histogram of CTPA images using Bayesian analysis. The proportion of each component, its spatial heterogeneity (entropy), and center-to-periphery distribution of the attenuation were calculated and correlated with the findings on CTPA semi-quantitatively evaluated by radiologists and with clinical function tests. CTPA scans from 52 patients (mean age, 65.2 ± 13.0 years; 27 men) diagnosed with CTEPH were analyzed. An inverse correlation was observed between the proportion of normal parenchyma and brain natriuretic propeptide (proBNP, ρ = -0.485, p = 0.001), mean pulmonary arterial pressure (ρ = -0.417, p = 0.002) and pulmonary vascular resistance (ρ = -0.556, p < 0.0001), mosaic attenuation (ρ = -0.527, p < 0.0001), perfusion centralization (ρ = -0.489, p = < 0.0001), and right ventricular diameter (ρ = -0.451, p = 0.001). The entropy of hyperemic parenchyma showed a positive correlation with the pulmonary wedge pressure (ρ = 0.402, p = 0.003). The slope of center-to-periphery attenuation distribution correlated with centralization (ρ = -0.477, p < 0.0001), and with proBNP (ρ = -0.463, p = 0.002). This study validates an automated system that leverages Bayesian analysis to quantify the severity and distribution of perfusion changes in CTPA. The results show the potential of this method to support clinical evaluations of CTEPH by providing reproducible and objective measures. Question This study introduces an automated method for quantifying the extent and spatial distribution of pulmonary perfusion abnormalities in CTEPH using variational Bayesian estimation. Findings Quantitative measures describing the extent, heterogeneity, and distribution of perfusion changes demonstrate strong correlations with key clinical hemodynamic indicators. Clinical relevance The automated quantification of perfusion changes aligns closely with radiologists' evaluations, delivering a standardized, reproducible measure with clinical relevance.

Large Scale MRI Collection and Segmentation of Cirrhotic Liver.

Jha D, Susladkar OK, Gorade V, Keles E, Antalek M, Seyithanoglu D, Cebeci T, Aktas HE, Kartal GD, Kaymakoglu S, Erturk SM, Velichko Y, Ladner DP, Borhani AA, Medetalibeyoglu A, Durak G, Bagci U

pubmed logopapersMay 28 2025
Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets. Here, we present CirrMRI600+, the first comprehensive dataset comprising 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted sequences, totaling nearly 40,000 annotated slices) with expert-validated segmentation labels for cirrhotic livers. The dataset includes demographic information, clinical parameters, and histopathological validation where available. Additionally, we provide benchmark results from 11 state-of-the-art deep learning experiments to establish performance standards. CirrMRI600+ enables the development and validation of advanced computational methods for cirrhotic liver analysis, potentially accelerating progress toward automated Cirrhosis visual staging and personalized treatment planning.

C2 pars interarticularis length on the side of high-riding vertebral artery with implications for pars screw insertion.

Klepinowski T, Kałachurska M, Chylewski M, Żyłka N, Taterra D, Łątka K, Pala B, Poncyljusz W, Sagan L

pubmed logopapersMay 28 2025
C2 pars interarticularis length (C2PIL) required for pars screws has not been thoroughly studied in subjects with high-riding vertebral artery (HRVA). We aimed to measure C2PIL specifically on the sides with HRVA, define short pars, optimal pars screw length, and incorporate C2PIL into HRVA clusters using machine learning algorithms. A clinical anatomical study based on cervical CT was conducted with STROBE-compliant case-control design. HRVA was defined as accepted. Interobserver, intraobserver, and inter-software agreement coefficients for HRVA were adopted from our previous study. Sample size was estimated with pwr package and C2PIL was measured. Cut-off value and predictive statistics of C2PIL for HRVA were computed with cutpointr package. Unsupervised machine learning clustering was applied with all three pars parameters. 345 potential screw insertion sites (PSIS) were grouped as HRVA (143 PSIS in 110 subjects) or controls (202 PSIS in 101 subjects). 68% participants were females. The median C2PIL in HRVA group was 13.7 mm with interquartile range (IQR) of 1.7, whereas in controls it was 19.8 mm (IQR = 2.7). The optimal cut-off value of C2PIL discriminating HRVA was 16.06 mm with sensitivity of 96.5% and specificity of 99.3%. Therefore, clinically important short pars was defined as ≤ 16 mm rounding to the nearest screw length. Two clusters were created incorportating three parameters of pars interarticularis. In preoperative planning, the identified C2PIL cut-off of ≤ 16 mm may assist surgeons in early recognition of HRVA. The average screw lengths of 14 mm for bicortical and 12 mm for safer unicortical purchase in HRVA cases may serve as practical intraoperative reference points, particularly in situations requiring rapid decision-making or when navigation systems are unavailable. Moreover, C2PIL complements the classic HRVA parameters within the dichotomized clustering framework.

Deep learning reconstruction enhances tophus detection in a dual-energy CT phantom study.

Schmolke SA, Diekhoff T, Mews J, Khayata K, Kotlyarov M

pubmed logopapersMay 28 2025
This study aimed to compare two deep learning reconstruction (DLR) techniques (AiCE mild; AiCE strong) with two established methods-iterative reconstruction (IR) and filtered back projection (FBP)-for the detection of monosodium urate (MSU) in dual-energy computed tomography (DECT). An ex vivo bio-phantom and a raster phantom were prepared by inserting syringes containing different MSU concentrations and scanned in a 320-rows volume DECT scanner at different tube currents. The scans were reconstructed in a soft tissue kernel using the four reconstruction techniques mentioned above, followed by quantitative assessment of MSU volumes and image quality parameters, i.e., signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Both DLR techniques outperformed conventional IR and FBP in terms of volume detection and image quality. Notably, unlike IR and FBP, the two DLR methods showed no positive correlation of the MSU detection rate with the CT dose index (CTDIvol) in the bio-phantom. Our study highlights the potential of DLR for DECT imaging in gout, where it offers enhanced detection sensitivity, improved image contrast, reduced image noise, and lower radiation exposure. Further research is needed to assess the clinical reliability of this approach.
Page 244 of 3023020 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.