Diagnosis of Sarcopenia Using Convolutional Neural Network Models Based on Muscle Ultrasound Images: Prospective Multicenter Study.
Chen ZT, Li XL, Jin FS, Shi YL, Zhang L, Yin HH, Zhu YL, Tang XY, Lin XY, Lu BL, Wang Q, Sun LP, Zhu XX, Qiu L, Xu HX, Guo LH
•papers•May 6 2025Early detection is clinically crucial for the strategic handling of sarcopenia, yet the screening process, which includes assessments of muscle mass, strength, and function, remains complex and difficult to access. This study aims to develop a convolutional neural network model based on ultrasound images to simplify the diagnostic process and promote its accessibility. This study prospectively evaluated 357 participants (101 with sarcopenia and 256 without sarcopenia) for training, encompassing three types of data: muscle ultrasound images, clinical information, and laboratory information. Three monomodal models based on each data type were developed in the training cohort. The data type with the best diagnostic performance was selected to develop the bimodal and multimodal model by adding another one or two data types. Subsequently, the diagnostic performance of the above models was compared. The contribution ratios of different data types were further analyzed for the multimodal model. A sensitivity analysis was performed by excluding 86 cases with missing values and retaining 271 complete cases for robustness validation. By comprehensive comparison, we finally identified the optimal model (SARCO model) as the convenient solution. Moreover, the SARCO model underwent an external validation with 145 participants (68 with sarcopenia and 77 without sarcopenia) and a proof-of-concept validation with 82 participants (19 with sarcopenia and 63 without sarcopenia) from two other hospitals. The monomodal model based on ultrasound images achieved the highest area under the receiver operator characteristic curve (AUC) of 0.827 and F1-score of 0.738 among the three monomodal models. Sensitivity analysis on complete data further confirmed the superiority of the ultrasound images model (AUC: 0.851; F1-score: 0.698). The performance of the multimodal model demonstrated statistical differences compared to the best monomodal model (AUC: 0.845 vs 0.827; P=.02) as well as the two bimodal models based on ultrasound images+clinical information (AUC: 0.845 vs 0.826; P=.03) and ultrasound images+laboratory information (AUC: 0.845 vs 0.832, P=0.035). On the other hand, ultrasound images contributed the most evidence for diagnosing sarcopenia (0.787) and nonsarcopenia (0.823) in the multimodal models. Sensitivity analysis showed consistent performance trends, with ultrasound images remaining the dominant contributor (Shapley additive explanation values: 0.810 for sarcopenia and 0.795 for nonsarcopenia). After comprehensive clinical analysis, the monomodal model based on ultrasound images was identified as the SARCO model. Subsequently, the SARCO model achieved satisfactory prediction performance in the external validation and proof-of-concept validation, with AUCs of 0.801 and 0.757 and F1-scores of 0.727 and 0.666, respectively. All three types of data contributed to sarcopenia diagnosis, while ultrasound images played a dominant role in model decision-making. The SARCO model based on ultrasound images is potentially the most convenient solution for diagnosing sarcopenia. Chinese Clinical Trial Registry ChiCTR2300073651; https://www.chictr.org.cn/showproj.html?proj=199199.